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ABSTRACT

Retinal fundus images are used in the diagnosis and treatment of many eye conditions, such as diabetic retinopathy and

glaucoma. During a clinical examination, an ophthalmologist is able to determine the onset of disease by taking certain

features of the retinal vessels of the fundus into account. Often the ophthalmologist will need to select what parts of a

retinal fundus image constitute vessels, so that certain statistics such as the thickness of the vessels can be calculated.

Labelling all the vessels however, is a tedious and time consuming process. We make use of an edge detection approach,

followed by connected component analysis and a fast Shi-Karl level-set technique, to extract the vessels from the image.

Our work focuses on using image processing techniques in order to develop a computer program that can automatically

and interactively detect and segment blood vessels in these images, thereby saving the ophthalmologist considerable time.

We create our tool as a series of plug-ins for ImageJ, which is a public domain, Java-based image processing program

developed at the National Institutes of Health. By doing so, we facilitate the use of our tool as part of a bigger system.

Furthermore, ophthalmologists can easily modify the proposed vessel segmentation of our system using ImageJ, and have

an ever growing library of image processing plug-ins at their disposal, to annotate, enhance and measure images.
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1 INTRODUCTION

Diseases that affect the optic nerve and that can cause
blindness, such as glaucoma and diabetic retinopathy,
can often be prevented if they are diagnosed at an
early stage. It has been shown that a screening pro-
cess, using retinal fundus images, may aid in reducing
blindness by 50% for diabetic retinopathy cases [1].

During the screening process, the ophthalmol-
ogists will focus on features of the retinal vessel.
Features such as vessel thickness, shape, color and
pathologies that appear around the vessels, all aid in
the diagnosis of the disease. Computer aided screening
systems have been developed to track the changes of
the vessel structure of a patient, and to detect patholo-
gies [2]. Such screening systems often rely on the seg-
mentation of retinal vessels, and ophthalmologists are
forced to spend a lot of time manually segmenting the
vessels in the retinal fundus images.

Automating the segmentation of the vessels in
the retinal images is an ongoing field of research,
and many image processing techniques have been pro-
posed. The bulk of previous work can be roughly
categorized into multi-scale analysis [3], matched fil-
ters [4], mathematical morphology schemes [5], adap-
tive thresholds [6], tracking based approaches [7] and
deformable models [8]. A leading method has not
emerged, and an ongoing effort is being made to im-
prove the results.
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In our work, we focus on segmenting the reti-
nal vessels automatically using image gradients, to-
gether with connected component analysis and post-
processing, to suppress false edges. Additionally, we
extract the contour of the segmented vessels using the
Shi-Karl fast level-set method [9], and create a custom
selection marquee in ImageJ [10], to allow the user to
modify the segmentation.

The rest of our paper is organized as follows. In
the next section we review related work on retinal ves-
sel segmentation. In section 3, we explain the process-
ing steps of our retinal vessel segmentation system.
The implementation details, and comparisons of our
segmentation results, to several other methods using
the DRIVE [22] database of retinal images, are pre-
sented in section 4. Finally in section 5, we conclude
our paper with a discussion of limitations and future
work.

2 RELATED WORK

Much has been published on the topic of automatic
vessel segmentation, and as we have already men-
tioned, researchers have applied a wide variety of tech-
niques to extract vessels. A good review of vessel seg-
mentation methods can be found in [11] and [12].

Vessels exhibit a lower reflectance than other fea-
tures, which results in their appearance as dark struc-
tures in retinal images [13]. This contrast allows ves-
sels to be segmented using an edge detection tech-
nique. This observation was exploited in the work of
Malladi et al.[14], who proposed to extract vessels by
halting active contours at positions where the edge
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response is strong.
A similar approach was taken by Caselles et

al.[15], who made use of a geodesic active contour
model.

McInerney and Terzopoulos incorporated the
Laplacian operator into their parametric active con-
tour model called T-Snake [16], and used it to discover
boundaries for tissue extraction in medical images.

Lu and Eiho [17] used edge detection, followed by
finding branches and tracing contours, to extract coro-
nary arterial boundaries from X-Ray Angiography im-
ages.

In terms of user intervention, Quek et al.[18]
proposed a model to interpret Neurovascular X-Ray
angiography images interactively. Their so called
attentionally-based interactive model(AIM), links the
user with the computer as integral partners, and fa-
cilitates varying degrees of human intervention in the
process of segmenting vessels, and other structures.
Their system also employs several edge detection al-
gorithms, such as Canny and Sobel, for the extraction
of vessel boundaries.

Another semi-automatic vessel segmentation tool
was developed by Shen and Johnson [19]. In their
system, the user supplies a initial starting point on
a vessel, and thereafter edge detection and contour
tracing methods are applied to find region boundaries.

There are two main problems with using edge
magnitude to segment retinal vessels. Firstly, when
the contrast between the vessel and other structures
in the eye is poor, the edge response will be low. Sec-
ondly, noise in the image will result in false edge re-
sponses.

To minimize the impact of noise on our edge re-
sponses, we make use of a Laplacian of Gaussians as
our edge detection mechanism.

Vessels that have poor contrast are usually very
thin and short, and as yet no leading method has
emerged that can detect those very thin vessels with a
high degree of accuracy, without many false positives.
Instead of attempting to detect these thin vessels auto-
matically, we prefer to allow the end-user to manually
segment them using ImageJ. Although ophthalmolo-
gists still have to segment thin vessels manually, not
much time is needed because those vessels are short
and thin.

3 RETINAL VESSEL SEGMENTATION

Our retinal vessel segmentation algorithm can be
viewed as a sequence of steps, which starts with image
enhancement to minimize noise and increase contrast
in the image; followed by edge detection and auto-
matic thresholding, and ends with connected compo-
nent manipulation and contour extraction.

In the following sections we explain each process-
ing step in more detail.

3.1 Extracting the Green Channel

In color retinal fundus images, the green channel usu-
ally contains the best contrast between the vessel
structures and the background [23]. The first step of
our segmentation method, is to extract the green chan-
nel from the RGB image, since the better the contrast
between the vessel structures and the background, the
stronger the edge response. Refer to Figure 1.

3.2 Sharpening the Image

The second step consists of an unsharp mask filter,
which is the process of subtracting a blurred version
of an image from the image itself. The process can be
expressed as

f̂(x, y) = f(x, y)− (
i=k∑

i=−k

j=k∑

j=−k

f(x + i, y + j)g(i, j)),

(1)
where f̂(x, y) denotes the sharpened image ob-

tained by unsharp masking, f(x, y) is the original im-
age, k denotes the size of the convolution kernel, and
g(x, y) is a gaussian in two dimensions defined as

g(x, y) =
1

2πσ2
e
−x2−y2

2σ2 . (2)

The filter enhances the appearance of vessels, and
results in a stronger edge response.

3.3 Edge Detection

A Laplacian of Gaussians filter was convolved with the
image to detect edges. A standard laplacian highlights
gray-level discontinuities in an image, and deempha-
sizes regions with slow varying gray levels, however it
is also very sensitive to noise. The Laplacian of Gaus-
sians filter reduces the response to noise by smoothing
the laplacian convolution mask. The 2D Laplacian of
Gaussians function centered on zero, and with a stan-
dard deviation of σ has the form:

LoG(x, y) = − 1
πσ4

[1− x2 + y2

2σ2
]e−

x2+y2

2σ2 . (3)

The edge response image f̂(x, y) is then computed
with

f̂(x, y) =
i=k∑

i=−k

j=k∑

j=−k

f(x + i, y + j)LoG(i, j), (4)

where f(x, y) is the original image, and k is the
size of the convolution kernel.

3.4 Thresholding the Edge Response

After the Laplacian of Gaussians operator is applied
on the image, the resulting image consists of edge mag-
nitudes. A threshold is needed to separate strong edge
responses, which ideally represent vessels, from weak
edge responses, which represent noise or background.
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Figure 1: Comparison of the contrast between red, green and blue channels of a color retinal fundus image.

a) The original color retinal fundus image. b) The red channel of the image. c) The green channel of the image.

d) The blue channel of the image.

This threshold creates a binary image, and the process
can be expressed as

g(x, y) =
{

1, if f(x, y) is ≥ t;
0, otherwise, (5)

where f(x, y) represents the original image, and
g(x, y) is the resulting binary image. We tested sev-
eral techniques that attempt to determine the best
threshold t automatically. The techniques included
Otsu [25], entropy of the histogram [24], and a mix-
ture of gaussians approach. The mixture of gaussians
method performed the best across our test images.

The mixture of gaussians threshold algorithm as-
sumes that the foreground and the background can
be modelled by two gaussian distributions. In other
words, the algorithm assumes that the normalized his-
togram H(i), is a mixture of two gaussian distribu-
tions, defined as

H(i) =
P1√
2πσ1

e−
1
2 (

i−µ1
σ1

)2 +
P2√
2πσ2

e−
1
2 (

i−µ2
σ2

)2 , (6)

where i represents the pixel grey-level intensity, and
P1 + P2 = 1.

The aim of the algorithm is to choose a thresh-
old intensity t, to minimize the probability of wrongly
classifying a foreground pixel as background, or vice
versa.

There are several different techniques of solv-
ing this problem, which are discussed in [20]. One
commonly used approach called the minimum error
method, proposed by Kittler and Illingworth in [21],
is to optimize a criterion function J(t), which is re-
lated to the average pixel classification error rate. It
is defined as

J(t) = 1 + 2[P1(t) ln σ1(t) + P2(t) ln σ2(t)] (7)
− 2[P1(t) ln P1(t) + P2(t) ln P2(2)].

The function J(t) is evaluated for all grey-level in-
tensities, and the parameters P1, P2, σ1 and σ2 are cal-
culated from the two portions of the histogram, that
are separated by the threshold t. The threshold t that
minimized J(t), is then used to binarize the image.

The value P1(t) can be calculated with

P1(t) =
t∑

i=0

H(i); (8)

and the value P2(t) can be calculated with

P1(t) =
G∑

i=t+1

H(i); (9)

for a threshold t ∈ {0, 1, 2, . . . G}, where G is the
maximum number of grey-levels.

3.5 Connected Components Analysis

After producing the binary image g(x, y), using the
threshold determined with the mixture of gaussians
algorithm, there is no guarantee that the binary im-
age consists of vessels only (refer to Figure 2). This
is because spurious noise in the image may have pro-
duced strong edge responses, which would have been
labelled incorrectly as vessels.

The foreground and background of the binary
image g(x, y), can be viewed as a set of classes of
connected and similar pixels. By considering the 4-
connected discrete neighborhood of a pixel g(x, y) as
the pixels

g(x− 1, y), g(x + 1, y), g(x, y − 1), and g(x, y + 1),

we can use this 4-connectivity to group the binary
image g(x, y) into classes c0, c2,c3,. . . ,ck−1, where k is
the number of connected components. The resulting
image C can be defined as:

C =
k−1⋃

i=0

ci, (10)

ci = {(x, y, i), 0 ≤ y ≤ m− 1 and 0 ≤ x ≤ n− 1}.
The letters m and n, are the number of rows and
columns of the image respectively.

Often the spurious noise pixels are not connected
to vessels, and form small connected components. By
removing connected components of size < ε, we can
remove a lot of pixels that are not vessels.
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Figure 2: The result of thresholding on the response of a

laplacian of gaussian edge detector, using a threshold T ,

that was determined automatically by a mixture of gaus-

sians algorithm.

Figure 3: A binary image representing the vessels in a

retinal fundus image. Using connected component manip-

ulation, components of size < 20 were removed; holes were

filled, and the large outer ring was removed.

It is also possible to remove the large ring compo-
nent that is formed around the retinal fundus image
automatically, by removing the first large component
found after scanning the image from left to right in a
horizontal direction at row m/2.

Additionally, the vessel segmentation can be en-
hanced by filling any holes that appear in the con-
nected components. Figure 2 shows a binary image
before connected component manipulation, and Fig-
ure 3 after connected component manipulation.

3.6 Contour Extraction

Once we have the clean binary image of vessels, the
last step in our vessel segmentation extracts the con-
tour of the vessels from the binary image, and overlays

it over the original retinal fundus image as a custom
selection marquee. This means that the end-user can
interactively adjust the final segmentation, by adding
or removing from the selection.

To extract the vessel contours from the binary
image, we make use of the Shi-Karl [9] fast level-set
framework, and propagate a region based active con-
tour that flows over pixels of intensity 0, and stops at
pixels with intensity 255.

3.6.1 Shi-Karl Fast Level-Set Method

The level-set method is a numerical technique, for
tracking a propagating interface which changes topol-
ogy over time. It is often used in image segmentation
[26], and has also been used to segment vessels [27].
A segmentation is achieved by placing a closed curve
on an image, and by evolving the curve according to
internal, external and user defined forces. Snakes [28]
are used in a similar way to segment an image, but in
the level-set method, the curve can split and change
topology whereas snakes cannot. These deformable
models are also sometimes called active contours.

The traditional level-set method [29] requires the
calculation of partial differential equations, that gov-
ern the evolution of the curve. The level-set function
is evaluated over the entire image, or over a narrow
band [30], to determine where the contour is for each
point in time during its evolution. The evaluation of
the level-set function is a very time consuming calcu-
lation. In [9], Shi and Karl proposed a fast implemen-
tation of the level-set method, that does not require
the calculation of partial differential equations. Their
framework resembles the traditional level-set method,
because the curve C is still represented implicitly as
the zero level-set of a function φ. The function φ is de-
fined as the signed distance function, which is positive
outside C and negative inside C. From this definition,
when a point on C moves inward, its neighboring point
that previously was inside the curve C, will lie outside
the curve, and so the value of φ of that neighboring
point will change from negative to positive. Similarly
if a point on C moves outwards, the value of φ of its
outside neighboring point will change from positive to
negative. This means that the evolution of the curve
C can be controlled without solving partial differen-
tial equations, by manipulating the values of φ for a
list of neighboring points outside C (Lout), and a list
of neighboring points inside C (Lin). Formally, the
two lists of neighboring points can be defined by the
following two equations:

Lin = {x|φ(x) < 0 and ∃ y ∈ N4(x), φ(y) > 0};
(11)

Lout = {x|φ(x) > 0 and ∃ y ∈ N4(x), φ(y) < 0},
(12)

where N4(x) is the discrete 4-connected neighborhood
of a pixel x.

To approximate the signed distance function, φ is
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defined as:

φ(x) =





3, if x is outside C and x /∈ LOut;
1, if x ∈ LOut;

−1, if x ∈ LIn;
−3, if x is inside C and x /∈ LIn.

(13)
The curve is evolved by switching neighboring pix-

els between the two lists Lin and Lout, based on an
external speed function Fext, an internal speed func-
tion Fint, and by updating the level set function φ.
The external speed is used to attract the curve to the
regions of interest, while the internal speed is used to
regularize the evolution of the curve so that the curve
remains smooth.

In our approach the curve C is evolved according
to the external speed Fext only; a positive value of
Fext moves a point on C outwards (by switching the
point from Lout to Lin), while a negative value of Fext

moves a point on C inwards (by switching the point
from Lin to Lout).

Since we are evolving our curve on a binary im-
age, where all noise has already been removed, there
is no need to further smooth the curve according to an
internal speed function Fint. We refer the interested
reader to [31], where the use of the internal speed func-
tion Fint is explained in more detail.

In general, the external speed is synthesized from
the image, and there are many ways to define Fext.
For example, the function Fext could be based on the
response of an edge detector applied to the image; it
could be based on the mean intensities of the regions
inside and outside the curve C, or as in our case, it
could depend on a range of pixel intensities only.

To extract the contour of the vessels from the bi-
nary image, we define the external speed as:

Fext(i) =
{

1, if i = 0;
−1, if i = 255,

(14)

where i represents the pixel intensity, for a point
on the binary image g(x, y).

The evolution of the curve stops when one of the
two following conditions is satisfied: (a) The speeds
at each neighboring grid point satisfy:

F (x) ≤ 0, ∀x ∈ Lout (15)

F (x) ≥ 0, ∀x ∈ Lin; (16)

(b) a pre-defined maximum number of iterations Na,
is reached. The pre-defined maximum number of iter-
ations needs to be specified for a noisy image, because
the curve may fail to converge to the stable state spec-
ified in (a).

3.6.2 Curve Evolution Implementation

Curve evolution using the Shi-Karl level-set frame-
work, can be implemented by using a two dimensional
array for the level-set function φ. The dimension of
the array equals the dimension of the input image I
(which itself is stored in an array). The interior list
Lin, and the exterior list Lout, are represented using

doubly-linked lists for efficient insertion and deletion.
Using these data structures, the curve can be evolved
according to algorithm 1.

Algorithm 1 Main Curve Evolution Loop
1: Initialize φ, Lin and Lout to some closed curve

according to equation 13.
2: repeat
3: Execute algorithm 2
4: until equations 15 and 16 hold, or Na iterations

have elapsed.

4 EXPERIMENTAL SETUP

Our vessel segmentation system was implemented as
a series of plug-ins for ImageJ [10].

ImageJ is a public domain, Java-based image pro-
cessing program developed at the National Institutes
of Health. It is widely used in the medical image
processing community, because of its open architec-
ture, that provides extensibility via Java plugins and
recordable macros. By developing our retinal vessel
segmentation algorithms as plugins for ImageJ, we fa-
cilitate the use of our work as a part of a bigger system.
Ophthalmologists will not only have at their disposal
our retinal vessel segmentation algorithm, but a whole
library of plugins and tools to enhance the image, and
to measure and annotate vessels and pathologies.

Our retinal vessel segmentation system can be
viewed as a series of procedures executed in sequence,
whereby each procedure is implemented as a plug-in
for ImageJ (Refer to Figure 4). Each plug-in can be
run independently from the pull-down menus available
in ImageJ. This allows the user to tweak certain pa-
rameters for that plug-in. By writing custom macro’s,
we chained each of these plug-ins together, with em-
pirically chosen parameters, to achieve our automatic
retinal vessel segmentation.

The ability to define custom macros that execute
arbitrary plug-ins in an arbitrary sequence, results in
a very flexible system whereby it is possible to au-
tomate additional pre-processing or post-processing,
by writing other plug-ins. This means that our work
can easily be extended, and used as a part of a larger
system.

4.1 Segmentation Results

We consider the binary image that has been processed
with connected component manipulation, to be the
segmentation result of our system. To test the accu-
racy of our vessel segmentation, we made use of the
DRIVE database [22], which has been established to
facilitate comparative studies on the segmentation of
blood vessels in retinal images. The database con-
tains gold standard manual segmentations, done by
an expert in the field, against which we compared our
results. We tested our algorithm on all twenty images,
and achieved the following results:
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Figure 4: Plug-in execution sequence to segment retinal vessels.

Algorithm 2 Evolution according to Fext

1: for j = 0 to |Lout| do {|Lout| represents the num-
ber of elements in Lout}

2: coord ← Lout(j)
3: i ← g(row(coord), column(coord))
4: if Fext(i) > 0 then
5: Move a point on the curve inward by one pixel

{Remove the point from Lin and add it to
Lout; update the level-set function φ accord-
ingly, taking the 4-connected neighborhood of
the point into account}.

6: end if
7: end for
8: Eliminate redundant points in Lin.
9: for j = 0 to |Lin| do {|Lin| represents the number

of elements in Lin}
10: coord ← Lin(j)
11: i ← g(row(coord), column(coord))
12: if Fext(i) > 0 then
13: Move a point on the curve outward by one

pixel {Remove the point from Lout and add it
to Lin; update the level-set function φ accord-
ingly, taking the 4-connected neighborhood of
the point into account}.

14: end if
15: end for
16: Eliminate redundant points in Lout.

• The highest accuracy of our algorithm was 0.944
with a sensitivity of 0.678 and a specificity of
0.975.

• The lowest accuracy of our algorithm was 0.887
with a sensitivity of 0.755 and a specificity of
0.905.
On average only about 12.3% of pixels in one reti-

nal image in the DRIVE database are vessels [22], so
it is possible to achieve an accuracy of approximately
0.87% over the entire test-set, just by naively labelling
every pixel in the retinal image as being part of the
background. This means that finding a good measure
to evaluate the segmentation result is difficult. The
current accepted norm is to use sensitivity and speci-
ficity as we have done.

Our method compares favorably with other pub-
lished algorithms displayed in Table 1, achieving the
second best segmentation result of the non-supervised
methods. The best segmentation result was achieved

Table 1: Vessel Segmentation Results

Method Average Accuracy
Human Observer 0.9473
Staal [22] 0.9442
Niemeijer [32] 0.9416
Zana [33] 0.9377
Our Approach 0.9299
Jiang [34] 0.9212
Martinez-Perez [35] 0.9181
Chaudhuri [36] 0.8773
All Background 0.8727

by a human observer who received limited training
from an expert. The second and third best results
were achieved by Staal et al [22] and Niemeijer et al
[32] respectively. Both used supervised pixel classi-
fication methods, which were trained on the DRIVE
training set.

Our gradient based approach fails to segment very
thin vessels, where the contrast between the thin ves-
sels and other structures is poor. Another drawback
of the gradient based approach, is that by itself it
cannot differentiate between vessels and pathologies,
since certain pathologies have a good contrast against
the background of the retinal fundus image. How-
ever, since the end-user can modify the proposed ves-
sel segmentation with ease, very little time is spent in
removing false positives. An example of our program
processing an image is given in Figure 5.

5 CONCLUSION AND FUTURE WORK

We have created a retinal vessel segmentation tool for
the ImageJ environment, that can propose a vessel
segmentation, which can be manually altered by the
end-user. By chaining together a series of plug-ins
for ImageJ to achieve our result, our work can easily
be extended an used as part of another system. The
source code for this project is available by request or
at http://www.cs.ukzn.ac.za/cvdm.

There are several extension that can be made to
our tool. Using plug-ins, it is very easy to integrate
other vessel segmentation techniques, such as those
based on pixel classification and multi-scale analysis.
Our future work will involve investigating methods,
that can more accurately segment thin-vessels. We
also intend to work more closely with ophthalmolo-
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Figure 5: An example of our program processing a retinal fundus image. The extracted contour is overlayed over the

original image.

gists, to evaluate the user-interface and to integrate
features based on their feedback.
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