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Abstract

Diabetic Retinopathy is the most common cause of blindness
in the working population of the western world and is very
common among people who suffer from diabetes. Fortunately,
during a clinical examination an ophthalmologist is able to
determine the onset of the disease by taking certain features of
the retinal vessels of the fundus into account. These features
include the narrowing of vessels and their general structure.
The clinical examination involves retinal imaging whereby
a photo of the back of the inside of the eye is taken. The
ophthalmologist then usually digitises the image by manually
selecting what parts of the photo constitute vessels, so that
certain statistics such as the thickness of the vessels can be
calculated by a computer program. Labelling all the vessels
however is a tedious and time consuming process. Our work
focuses on using image processing techniques in order to
develop a computer program that can automatically detect
and segment blood vessels in these images, thereby saving
the ophthalmologist considerable time. We make use of a fast
level set method without solving partial differential equations
to extract the contour of the vessels in the retina and overlay
the contour over the original input image. This further aids the
work of an ophthalmologist because it highlights the vessel
structure.
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1. Introduction
The automatic segmentation of blood vessels in retinal fundus
images is an active and challenging area of research. Automatic
segmentation of retinal vessels is the first step towards the de-
velopment of an automatic retinal screening system. Such a
system is in great demand because common causes of visual im-
pairment such as glaucoma and diabetic retinopathy can often
be prevented if they are diagnosed at an early stage. Currently
the number of patients that can be screened is limited by the fact
that a manual examination by an ophthalmologist is a very time
consuming process.

The reason why the automatic segmentation of blood ves-
sels plays such a great role in the development of an auto-
matic retinal screening system is because certain features of the
vessels such as the inter-connectivity of the vessels, the thick-
ness and color of the vessels as well as pathologies that appear
around the vessels all aid in the diagnosis of diseases. Many
algorithms for optic disk detection [1], pathology detection [2]
and computer aided screening systems [3] all depend on the ex-
traction of the retinal vessels.

Researchers have approached the problem of automatically
segmenting retinal vessels from different angles using a myr-
iad of techniques. The bulk of previous work can be roughly
categorized into multi-scale analysis [4], matched filters [5],
mathematical morphology schemes [6], adaptive thresholds [7],
tracking based approaches [8] and deformable models [9]. In
our work we focus on the deformable model approach because
in addition to segmenting the retinal vessels we extract the con-
tour of the segmented vessels and overlay the contour over the
original image. This aids an ophthalmologist in the diagnosis by
highlighting the vessel structure on the original image. It also
makes the validation of the segmentation easier since the medi-
cal doctor can see the outline of the structures that the algorithm
has labelled as being vessel.

The rest of our paper is organized as follows. In section 2
we present a brief overview of vessel extraction methods with
focus on deformable models. In section 3 we introduce the fast
non partial differential equation based level-set approach devel-
oped in [10] and in section 4 we explain how we built the speed
function that we used to deform our active contour and achieve
a vessel segmentation. We present our final results in section
5 and conclude with a discussion on future work and current
limitations in section 6.

2. Background
Much has been published on the topic of automatic vessel seg-
mentation and as we have already mentioned, researchers have
applied a wide variety of techniques to extract vessels. A good
review of vessel segmentation methods can be found in [11]
[12] and [13]. Our focus in this paper is on using geometric
deformable models to segment retinal vessels. Geometric de-
formable models work by evolving a curve over time according
to three forces: internal forces, external forces and user-defined
constraints. The external force is the most important force and
is usually synthesized from the image itself. It determines the
regions over which the curve will flow very fast and the regions
at which the curve will slow down and come to a stop. To seg-
ment an image a closed contour has to be placed on the image
and then as the curve evolves the area inside the curve is con-
sidered to be the segmented region. The curve is evolved over
time by embedding it in a higher dimensional scalar function
known as the level-set function, and solving partial differential
equations that govern the evolution of the curve. A good intro-
duction to the level-set method can be found in [14].

Even though geometric deformable models have been used
in many medical images to segment regions of interest, they
have so far performed quite poorly in segmenting retinal ves-
sels. The greatest challenge in segmenting retinal vessels lies
in the segmentation of thin vessels. This is because some ves-



sels are only one pixel thick and they may vary from the back-
ground by as little as four gray-levels [15]. As a result of this
it is very difficult to build an accurate speed field such that the
contour is attracted to the thin vessels. Typically the contour
leaks into the background as the speeds defined over the thin
vessel and the background are too similar. In [16] the authors
attempt to address the problem by incorporating a soft shape
prior (used-defined constraint) into the evolution of the contour.
They present promising results where some leakages are suc-
cessfully contained. A different approach to preventing contour
leakages and detecting vessels with poor contrast is introduced
in [17]. The authors extract edge information including orien-
tation and clearness to aid in the evolution of the contour based
on weighted local variance. They show that their method is
suitable for segmenting vessels that have blurry and low con-
trast boundaries. However both of the above approaches are
still fairly computationally expensive.

In our work we focus on incorporating a fast non partial
differential equation based deformable model for the segmenta-
tion of retinal vessels. We follow this route since to our knowl-
edge no one has as yet attempted to use a fast non-PDE based
deformable model to segment retinal vessels and we find the
computational complexity of the model particularly appealing.

3. A fast level-set method without solving
PDEs

One of the main drawbacks of using geometric deformable
models is the computational burden of solving the partial differ-
ential equations that govern the evolution of the curve. The fast
level set method without solving PDEs proposed in [10] takes
advantage of the fact that for image segmentation we are usu-
ally less interested in knowing precisely how the curve evolves
at each iteration but are more concerned with the final segmen-
tation. In their proposed framework a curve C is represented
implicity as the zero level-set of a higher dimensional scalar
function which is defined over a fixed grid. The function used in
this method has a negative value inside the curve and a positive
value outside the curve. This resembles the traditional level-set
method. Their method assumes that the grid is sampled uni-
formly and that the sampling interval is one. This means that
we can simply consider the pixels of the image as being the
points on the grid. With this implicit representation two lists of
neighboring grid points (pixels) LIn and LOut are defined for
a curve C as,

LIn = {x|φ(x) < 0 and ∃ y ∈ N(x), φ(y) > 0} (1)

LOut = {x|φ(x) > 0 and ∃ y ∈ N(x), φ(y) < 0} (2)

where N(x) is a discrete neighborhood of x defines as,

N(x) = {y ∈ D|
k∑

k=1

|yk − xk| = 1}, ∀x ∈ D (3)

and φ is the level set function.
Following this definition, a list of neighboring grid points

that lie inside the curve C is given by LIn and a list of neigh-
boring grid points that lie outside the curve C is given by LOut.
By considering these two lists of points, one can implicitly de-
termine where the curve C is. This means that to evolve the

curve one can do so by updating the two lists LIn and LOut us-
ing simple operations such as insertions and deletions. The de-
cision of inserting or deleting a point from either LIn or LOut

depends on the sign of the speed function at that point.
The method can be implemented using an array for the

level-set function φ, another array for the speed function F and
two lists for LIn and LOut. Pixels which are not in LIn or
LOut are classified as interior or exterior points depending on
whether they lie inside or outside the curve respectively. With
this in mind, the level-set function φ can be approximated to a
signed distance function as follows,

φ(x) =





3 if x is outside C and x /∈ LOut

1 if x ∈ LOut

−1 if x ∈ LIn

−3 if x is inside C and x /∈ LIn

(4)

To understand the details of the algorithm, two procedures
have to be defined: switch in(x) and switch out(x). The proce-
dure switch in(x) for a point x ∈ LOut is defined as follows:

1. Delete x from LOut and add it to LIn. Set φ(x) = −1

2. ∀y ∈ N(x) satisfying φ(y) = 3, add y to LOut and set
φ(y) = 1.

By applying the switch in(x) procedure to any point in LOut,
the boundary is moved outward by one grid point at that loca-
tion. On the other hand applying the switch out(x) procedure
at a point in LIn, the boundary is moved inward by one grid
point at that location. The procedure switch out(x) for a point x
∈ LIn is defined as follows:

1. Delete x from LIn and add it to LOut. Set φ(x) = 1

2. ∀y ∈ N(x) satisfying φ(y) = −3, add y to LIn and set
φ(y) = −1.

To evolve the curve at every iteration the speed of all points in
LOut and LIn is computed and the sign of the speed is stored in
the speed array F . Thereafter all the points in LOut are scanned
and the switch in(x) procedure is applied to a point if F > 0.
This takes care of all the points on the curve with a positive
speed and moves them outward by one grid point. After this
scan, some of the points in LIn become interior points due to
the newly added inside neighboring grid points and so they are
removed from LIn. The points in LIn are then scanned and a
switch out(x) procedure is applied to a point if F < 0. This
takes care of all the points on the curve with a negative speed
and moves them inward by one grid point. After this scan, some
of the points in LOut will become exterior points and so they are
removed from LOut. Finally a stopping condition is checked
and if it is satisfied the evolution of the curve stops, otherwise
the iterative process continues. A more thorough discussion on
the algorithm including some test results can be found in [18].

4. Building a speed field
From our investigation it is clear that the evolution of the curve
depends primarily on the speed field that is defined over the im-
age that we are trying to segment. A point on the curve either
moves outwards or inwards depending on the speed that is de-
fined for it. In order to extract the contour of the vessels we
need to ensure then that the speed field will resemble our final
segmentation of the vessel structure. In the next section we will
describe the process that we followed to build our speed field.



Figure 1: Extracted Green Channel of the Image Before Lapla-
cian Filter.

4.1. Extracting the green channel for maximum contrast

Our first step was to enhance the contrast between the vessel
structure and the background. The green channel of the image
usually contains the best contrast between the vessel structure
and the background [19]. For this reason we extracted the green
channel for all our input images and used them in the subse-
quent steps (see Fig. 1).

4.2. Sharpening the image

We sharpened the image to enhance the appearance of edges
which represent vessels. We used an unsharp mask which is the
process of subtracting a blurred version of the image from the
image itself.

4.3. Detecting edges

A ‘Laplacian of Gaussians’ filter was applied to the image to de-
tect edges (see Fig. 2). The laplacian highlights gray-level dis-
continuities in an image and deemphasizes regions with slow
varying gray levels, however it is also very sensitive to noise.
The ‘Laplacian of Gaussians’ filter reduces the response to
noise by smoothing the laplacian convolution mask. The 2D
‘Laplacian of Gaussians’ function centered on zero and with a
standard deviation of σ has the form:

LoG(x, y) = − 1

πσ4
[1− x2 + y2

2σ2
] exp

− x2+y2

2σ2 (5)

4.4. Thresholding the edge response

To determine what gray values represent the background and
what gray values represent the vessels that we are trying to seg-
ment, we made use of a mixture of gaussian threshold algo-
rithm. The mixture of gaussian threshold algorithm assumes
that the foreground and the background can be modelled by two

Figure 2: Resulting Image After the Laplacian Filter is Applied.

gaussian distributions and it calculates the threshold as the in-
tersection of these two distributions (see Fig. 5). We compared
this automatic thresholding algorithm to automatic threshold-
ing based on the entropy of the histogram [20] and the Otsu
thresholding [21] technique and found in our experiments that
it performed best on our images. A more detailed explanation
of the mixture of gaussians threshold algorithm can be found in
[22].

4.5. Connected component analysis

After thresholding our edge response (see Fig. 3) we make
use of connected component analysis to remove small compo-
nents from our speed field and the large circular disk component
which does not constitute a vessel. We also fill any holes that
appear in the connected components. An example of our final
speed field for an input image can be found in Fig. 4. Black
regions constitute a fixed negative speed and white regions con-
stitute a fixed positive speed. We use this binary speed field to
flow our active contour over the input image to extract the final
vessel contours.

5. Results
Since we are using a binary speed field, the accuracy of the fi-
nal contour depends entirely on the speed field. This means
that to validate the results of our extracted contour we can con-
sider the speed field as being our segmented vessels and we
can compare it against a ground truth segmentation for a par-
ticular test image. We made use of the DRIVE database [23]
which has been established to facilitate comparative studies on
segmentation of blood vessels in retinal images. The database
contains gold standard manual segmentations done by an expert
in the field against which we compared our results. We tested
our algorithm on all twenty images and achieved the following
results:



Figure 3: Resulting Image After Thresholding on Edge Re-
sponse.

Table 1: Vessel Segmentation Results
Method Average Accuracy
Human Observer 0.9473
Staal [23] 0.9442
Niemeijer [24] 0.9416
Zana [25] 0.9377
Our Approach 0.9299
Jiang [26] 0.9212
Martinez-Perez [27] 0.9181
Chaudhuri [28] 0.8773
All Background 0.8727

• The highest accuracy of our algorithm was 0.944 with a
sensitivity of 0.678 and a specificity of 0.975.

• The lowest accuracy of our algorithm was 0.887 with a
sensitivity of 0.755 and a specificity of 0.905.

An example of the kind of results we achieved can be found
in Fig.6-9

On average only about 12.3% of pixels in one retinal im-
age in the DRIVE database are vessels [23], so it is possible
to achieve an accuracy of approximately 0.87% over the entire
test-set, just by naively labelling every pixel in the retinal im-
age as being part of the background. This means that finding
a good measure to evaluate the segmentation result is difficult.
The current accepted norm is to use sensitivity and specificity
as we have done.

Our method compares favorably with other published algo-
rithms displayed in Table 1, achieving the second best segmen-
tation result of the non-supervised methods. The best segmen-
tation result was achieved by a human observer who received
limited training from an expert. The second and third best re-
sults were achieved by Staal et al [23] and Niemeijer et al [24]
respectively. Both used supervised pixel classification methods
which were trained on the DRIVE training set.

Figure 4: Resulting Speed Field After Connected Component
Manipulation.

Figure 5: The Mixture of Gaussians Algorithm Sets the Thresh-
old at the Intersection of the two Gaussian Distributions.

6. Limitations and future work
One of the main challenges in this field of research remains the
extraction of thin vessel structures. Currently our algorithm still
fails to identify many of these thin vessels, especially in noisy
images. However one of the positive aspects of our approach is
that it very rarely results in an over-segmentation of the vessel
structures. This means that most of the pixels that are labelled
as being vessels are in fact vessels. To address the challenge of
thin vessel segmentation we propose separating the problem of
detecting thin and thick vessels. Our algorithm already detects
thick vessels with very good accuracy and we suggest using the
knowledge that thin vessels branch off thick vessels to incorpo-
rate a shape prior tailored to very thin vessels and letting it flow
from a few select points of the thick vessels’ contours.

7. Conclusions
We have successfully incorporated the fast level set method
without solving PDE’s to extract the contour of vessels in retinal
fundus images. We have demonstrated how a binary speed field
for the fast level set method could be built, and we have tested
our algorithm on a publicly available database with promising
results. By overlapping the extracted contour over the color reti-



Figure 6: Original Retinal Fundus Image.

Figure 7: Final Extracted Contour Overlayed Over the Original
Image.

nal fundus image we aid an ophthalmologist by highlighting the
vessels, and our speed field which represents a vessel segmen-
tation can be considered as the first step towards an automatic
retinal vessel screening system.

8. Acknowledgements

This research was supported by the PRISM Grant/CSIR.

Figure 8: Gold Standard Ground Truth Segmentation.

Figure 9: Our Segmentation Overlayed Over the Ground Truth.
(Yellow regions indicate a perfect match, red regions indicate
vessels that have been missed and green regions indicate pixels
that have been incorrectly labelled as vessels.)
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