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Maritime Surveillance:
Tracking Ships inside a Dynamic Background Using a Fast Level-Set

Zygmunt L. Szpak∗,a, Jules R. Tapamoa

aDepartment of Computer Science, University of Kwazulu-Natal, Westville, KZN, 4001, Republic of South Africa.

Abstract

Surveillance in a maritime environment is indispensible in the fight against a wide range of criminal activities, in-

cluding pirate attacks, unlicensed fishing trailers and human trafficking. Computer vision systems can be a useful

aid in the law enforcement process, by for example tracking and identifying moving vessels on the ocean. However,

the maritime domain poses many challenges for the design of an effective maritime surveillance system. One such

challenge is the tracking of moving vessels in the presence of a moving dynamic background (the ocean). We present

techniques that address this particular problem. We use a background subtraction method and employ a real-time

approximation of level-set-based curve evolution to demarcate the outline of moving vessels in the ocean. We report

promising results on both small and large vessels, based on two field trials.

Key words: Computer vision, tracking, real-time systems, maritime, ships, defense.

1. Introduction

Pirates that attack cruise liners, illegal fishing vessels

and ships carrying illegal immigrants are examples of

everyday problems that threaten the safety of coastal

countries and the crews of ships.

The coastal waters of Somalia and the Straits of

Malacca are particularly notorious for pirate activities,

and several recent attacks have caught the media’s at-

tention (et al., 2007(@).

In 1992, the International Maritime Bureau Piracy

Reporting Center was set-up in Kuala Lumpur

(Malaysia), in order to facilitate a more coordinated re-

sponse to the scourge of piracy (et al., 2008(@). In the

∗Corresponding author
Email addresses: zygmunt.szpak@gmail.com (Zygmunt L.

Szpak ), tapamoj@ukzn.ac.za (Jules R. Tapamo)

year 2000, 112 attacks were reported in indonesian wa-

ters alone.

Ships are in danger of pirate attacks not only in open

waters, but are also vulnerable in a harbor environment.

To help combat piracy, the International Chamber of

Shipping has released a set of guidelines for naval ves-

sels that aim to reduce the number of successful pirate

attacks. One of the recommendations is that ships em-

ploy sophisticated surveillance and detection equipment

(et al., 2008(@).

In light of this recommendation, we critically analyze

the maritime environment and its impact on the require-

ments of a surveillance system, and present computer

vision algorithms capable of tracking various vessels

under specified scene assumptions. Our primary con-

cern is to extract the outline of moving vessels on the
Preprint submitted to Expert Systems with Applications December 8, 2010



  

ocean. The difficulty of this problem lies in the fact that

the ocean is dynamic and that the targets have to be ex-

tracted in an unpredictable outdoor environment. There-

fore our task is to extract moving targets in the presence

of a moving dynamic background.

1.1. Maritime Environment

The general unpredictable appearance of the sea

makes mathematical modeling of the environment par-

ticularly difficult (et al., 1999(@). Varying lighting and

wind conditions severely influence the motion and ap-

pearance of ocean waves, and sunlight reflecting off

ocean waves (glint) also causes spurious local lighting

changes. Storms and turbulent ocean waves are com-

mon, and rain can vary from a light-drizzle to a heavy

downpour.

In such cluttered and dynamic environments, poten-

tial threats (targets) are difficult to detect.

1.2. Target Profile

The characteristics of the targets that need to be

tracked in a maritime environment vary greatly. Some

of the properties of the targets are:

• Size (ranging from jet-skis to large oil tankers)

• Material (ranging from rubber boats to metallic

vessels

• Speed (ranging from stationary to very fast mov-

ing)

• Direction (some targets can change direction

rapidly while others cannot)

• Visibility of target (some targets have a good con-

trast to the ocean while others are intentionally

camouflaged)

A robust maritime system also needs to differentiate

between man-made structures on the sea, and animal

life. It also needs to be capable of tracking multiple

targets through a variety of occlusions. All of these re-

quirements have an influence on the choice of surveil-

lance methodology.

1.3. Surveillance Methodology

Conventional methods such as radar tracking often

have difficulty detecting pirate boats, because they are

very small. Pirates frequently use rigid inflatable boats

that are almost non-metallic, and therefore have poor

radar returns (et al., 2000(@).

For this reason, researchers are attempting to solve

the problem with computer vision systems.

In (et al., 2005(@), the requirements of a computer

vision maritime surveillance system are outlined. In the

view of the authors, a system should have the following

properties in order to be of practical use:

1. It must determine potential threatening objects

within a scene containing a complex, moving back-

ground.

2. It must produce no false negatives and a minimal

number of false positives.

3. It must be fast and highly efficient, operating at a

reasonable frame rate.

4. It must use a minimal number of scene-related as-

sumptions.

We base our implementation on these points, and

evaluate it accordingly in section 7.

Another aspect of maritime surveillance systems, is

that they are long-range surveillance systems and there-

fore the video camera must capture images at a high-

resolution. This property makes the design of a fast and

highly efficient maritime system particularly difficult.
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1.4. Assumptions

From the above discussion it is apparent that design-

ing a robust maritime surveillance system is a challeng-

ing task. In this paper, we limit the scope to extracting

the contour and tracking of multiple moving targets on

the sea. No attempt is made to differentiate between

animals and ships, although we intend to use the shape

information of the extracted contour to do this in future

work. The types of targets that are tracked in the exper-

iments include Jet-skis, sailboats, rigid-hulled inflatable

boats, tankers, ferries and patrol boats.

We also assume a fixed camera with pan and tilt func-

tionality.

2. Related Works

Many previous attempts to extract ships from the

ocean start by splitting an image of a scene into many

tiles, and proceed by calculating features such as en-

ergy, entropy, homogeneity and contrast for each tile.

The expectation is that tiles representing the ocean will

have similar features, and will differ significantly from

the features of the tiles containing ships, thereby mak-

ing a classification that can separate the ships from the

ocean possible.

This approach was used in (et al., 2000(@). In this

work, a user of the maritime surveillance system spec-

ifies the position of the horizon and a minimum tile

size. Ships at the horizon are usually smaller than ships

close to the bottom of the image. Consequently, a scene

is split into tiles whose dimensions are the minimum

tile size at the horizon; these dimensions increase the

closer the tiles are to the camera, and the further they

are from the horizon. A classifier is used to differen-

tiate the sea from the manmade objects based on the

above mentioned features. However, these techniques

have several limitations. For example, their work does

not give a precise segmentation of any objects in the

scene; often, the bounding box that is placed around a

ship is far greater than it should be, and it is clipped at

the horizon since the algorithm ignores anything above

the horizon. This means that structures such as sails are

frequently ignored. Furthermore, for classification it re-

quires a threshold value for separating the main feature

from outliers which may change from scene to scene.

This threshold is not determined adaptively, but rather

is a user-specified parameter. Finally, the work does not

include a discussion of the running time of the algo-

rithms, and real-time performance is questionable, es-

pecially on high-resolution images.

In (et al., 1999(@), a similar approach to extract the

ship from the ocean is used; an image of a scene is

split into many tiles and the same features (energy, en-

tropy, homogeneity and contrast) are calculated for each

tile. Instead of performing a classification on each frame

of the scene individually and independently of other

frames, the change of the feature vector for a tile across

several frames is calculated. If the change is above a

chosen threshold, that particular tile is marked as con-

taining motion of a ship. According to the authors, the

approach is robust against the motion of the sea. How-

ever, it is not clear under what lighting and sea con-

ditions their algorithm was tested. The algorithm also

fails to completely segment large objects; when the mo-

tion of the ships is perpendicular to the camera, only the

front and back of large ships are segmented.

In (et al., 1999(@), a system is developed to work

with Near-Infrared image sequence of the sea, and em-

ploys a three-tiered approach to extracting ships from

the ocean. First the image is pre-processed with a slid-
3



  

ing 3 by 3 pixel spatial floating window filter, which

uses the variance for each window to calculate the fil-

tered pixel value. The image is then divided into over-

lapping 32 by 32 pixel tiles, and some tiles representing

the sea are used to estimate the grey-level distribution

of the waves. This estimation is used in histogram seg-

mentation to binarize the image into sea and non-sea

tiles. The authors state their work reduces the apparent

motion in the image caused by the sea, and is capable of

tracking small ships. However, the dimensions of what

constitutes a small target are never specified. Results

are only presented on one 512 by 512 pixel image. The

greatest limitation of the work is that the generation of

the reference grey-level histogram has to be done manu-

ally. Furthermore, thresholding on the grey-levels alone

is problematic since often the grey-levels of the ships

are similar to the ocean. Lastly, a tile-based segmenta-

tion approach produces imprecise segmentation results.

A very similar approach to (et al., 1999(@) is taken

in (et al., 1999(@). Instead of using a reference grey-

level histogram to remove the ocean from the scene, a

fast Fourier transform is applied to 32 by 32 pixel win-

dows to build reference frequencies for the sea. These

are then subtracted from the image in the frequency do-

main. Results are also only presented on one 512 by

512 pixel image. Different scenes may require different

window sizes to be used in the fast Fourier transform,

and the choice of a window size that will result in the

best segmentation is not obvious.

The research endeavor presented here is inspired by

the work put forth in (et al., 2005(@), in which an image

is not partitioned into tiles. Instead, motion information

is detected at the pixel level using a background sub-

traction method, and the result is combined with post-

processing based on color segmentation.

Our work also makes use of pixel-level background

subtraction and post-processing to improve the segmen-

tation result; the fundamental difference is that we do

not work with color images and hence do not make use

of color segmentation. There are two primary reasons

for this: 1) usually long-range cameras are grey-scale

because they sacrifice color for resolution 2) even when

a color camera is used a filter is placed infront of the

camera because the blue-channel saturates the image,

since the shorter wavelength of blue light will scatter

more than the longer wavelengths of green and red light

(et al., 2003(@). Another important difference between

our work and (et al., 2003(@) is that we use a real-time

approximation of a level-set based curve evolution, to

track and extract the contour of multiple ships from the

sea.

The work presented in this paper is only one com-

ponent of a larger research project in maritime surveil-

lance, that spans everything from optronic sensor sys-

tems which aim to increase the resolution and reliability

of sensors, through to image enhancement, camera sta-

bilization, multiple view stitching, parallel processing,

tracking, target identification and scene understanding.

The tracking system presented here consists of three

components: motion-cue generation, spatial smooth-

ness regularization and contour extraction.

3. Motion-cue generation

Motion-cue generation has been widely studied in the

literature (et al., 2004(@), and two dominant paradigms

have emerged: optical flow and background subtraction.

One of the most important criteria that influences the

choice of motion-cue generation algorithms in the stud-

ied domain is the computational complexity of the algo-
4



  

rithm (running time and memory requirements). Op-

tical flow is known to be computationally expensive,

and since the maritime domain requires real-time per-

formance on high-resolution images, we instead work

inside the background subtraction paradigm. Recent

reviews of existing background subtraction algorithms

can be found in (et al., 2004(@) and (et al., 2008b(@).

3.1. Background Subtraction

In background subtraction, the process of classify-

ing pixels as being foreground or background is of-

ten formulated using classical statistics. By consider-

ing the frequency that a particular pixel intensity is ob-

served over time for a point on the image while the

normal variance of a scene is being learnt, one can

estimate a probability density function (PDF) for this

pixel. This PDF is then used to classify pixels as be-

longing to the foreground or background, by consider-

ing the likelihood of observing a particular intensity for

a pixel. If the pixels are normally distributed, then only

the mean and the variance statistics are needed to main-

tain the background model (et al., 1997(@). When the

probability density function is multi-modal, a mixture

of Gaussians is required for an accurate classification

(et al., 1999(@). Sometimes the PDF is too complex to

be modeled by a mixture of Gaussians, in which case

Kernel-density estimation can be used to approximate

the distribution (et al., 2000(@).

In the maritime environment, the most prevalent

background is the ocean. It follows that the choice of

an appropriate background subtraction method depends

greatly on the PDF of ocean pixels.

Histograms of randomly selected ocean pixels from

a variety of different maritime scenes, suggest that the

probability density functions for a majority of ocean

pixels are unimodaly distributed.

We employed Hartigan’s Dip test for unimodal dis-

tributions (et al., 1985(@) to test this hypothesis. The

test statistic called the Dip, measures the departure from

unimodality. A small Dip means that the data was more

likely generated by a unimodal cumulative density func-

tion, and a large value of Dip makes one reject the null

hypothesis of unimodality. We considered 5 different

maritime sequences, and recorded 10 different ocean

pixel observations over 800 frames for each of the se-

quences. This resulted in 50 samples of size 800 each.

The test statistic was calculated for each of the samples

at a level of significance α = 0.001. At this level of

significance, we failed to reject the null hypothesis for

39 out of 50 samples. Hence, for the 39 samples it is

plausible that the data originated from a unimodal PDF.

Altough the null hypothesis for the remaining 11 sam-

ples was rejected, visual inspection of the histograms

of those samples did not indicate the strong presence of

any other modes.

Clearly one cannot claim that all ocean pixels are un-

der all circumstances unimodaly distributed. A proof on

the distribution of ocean pixels would be very difficult

because the maritime environment can change so drasti-

cally depending on environmental conditions. However,

it can be argued that a large number of ocean pixels

do in fact follow a unimodal distribution, and our em-

pirical observations have been that a mixture of Gaus-

sians approximation of the probability density function

of ocean pixels, provides little benefit in dealing with

the main challenges of tracking ships on the ocean. We

will expand on this in the next section. Based on the

tests for unimodality and experiments in the domain,

it is assumed that a significant number of ocean pixels

are unimodally distributed, and a per-pixel background
5



  

model using a single gaussian distribution is built.

3.2. Proposed Background-subtraction Model

We denote an entire image sequence up to the

nth frame by Ωn = ( f1, f2, . . . , fn), where fk ∈
G{0,1,...,p−1}×{0,1,...,q−1}, and G ⊆ N; with p and q, repre-

senting the number of rows and columns of fk respec-

tively. The random variable, Xn
i, j, representing the grey-

level of pixels at the location (i, j), from frame 1 to n, is

defined as follows:

Xn
i, j = ( fk(i, j))1≤k≤n. (1)

Using this we can generate the expected value, µn
i, j, of

Xn
i, j as follows:

µn
i, j = (1 − ψ) × µn−1

i, j + ψ × Xn
i, j, (2)

and the variance (σn
i, j)

2, can be calculated using the

following recurrence relation et al. (1997(@):

(σn
i, j)

2 = (1−ψ)×(σn−1
i, j )2+ψ×(Xn

i, j−µn
i, j)×(Xn

i, j−µn−1
i, j ),(3)

where (σ0
i, j)

2 = 0 and µ0
i, j = X0

i, j.

When ψ = 1
n , then all observations are weighted

equally, and we calculate the true expected mean and

variance. When ψ = 1
ε
, 0 < ε < 1, we calculate a run-

ning mean and running variance with exponential decay,

meaning that more weight is given to recent observa-

tions. The motivation behind varying ψ, is that there is

a tradeoff between fast convergence to the true mean and

variance, and adapting to dramatic modifications of the

probability density function due to global environmen-

tal changes. The effect of ψ on the stability and adapt-

ability of background subtraction techniques that use

a mixture of Gaussian approach was studied in (et al.,

2005(@). Even though we are working with a uni-

modal probability density function, the conclusions are

Algorithm 1 Background model maintenance

Require: m {number of frames dedicated to learning}
oi, j {per-pixel counter for number of foreground ob-

servations}
delay {number of frames that elapse before fore-

ground observations are incorporated into back-

ground model}
1: if System is in the learning-phase then

2: for f = 0 to m do {Learn pixel distributions on m

frames}
3: Calculate the mean and variance using equa-

tions (2) and (3), with ψ = 1
f (fast conver-

gence)

4: end for

5: oi, j = m {Initialize variable}
6: else

7: if ki, j = delay then {delayed update of fore-

ground intensities}
8: ki, j ← 0

9: oi, j ← oi, j + 1

10: Update the mean and variance using equations

(2) and (3), with ψ = 1
oi, j

and x̄i, j as the obser-

vation.

11: end if

12: if | fn(i, j) − µn
i, j| > 3(σn

i, j) then {classify as fore-

ground}
13: Generate a difference image using equation (4)

14: ki, j ← ki, j + 1

15: x̄ki, j

i, j = (1 − 1
ki, j

) × x̄ki, j−1
i, j + 1

ki, j
× Xn

i, j (The back-

ground model is not immediately updated, in-

stead the foreground intensity observations are

weighted equally and stored in x̄i, j. )

16: else

17: Update the mean and variance using equations

(2) and (3), with ψ = 1
ε

(fast adaptability)

18: end if

19: end if
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the same, namely: when ψ = 1
n , the system quickly ap-

proaches the expected value during the learning-phase,

and converges to the local-optimal estimation over an

infinite number of observations on a stationary distri-

bution. When ψ = 1
ε
, since recent observations are

weighted more heavily, the system can approach the ex-

pected value of a non-stationary distribution, but takes

proportionally longer to converge to the expected value

of a stationary distribution.

With the previous discussion in mind, we calculate

and update our mean and variance, and classify pixels

as belonging to the background or foreground, with the

pseudo-code in Algorithm 1.

Initially the system is in the learning-phase for a user-

specified amount of frames (the parameter m). In this

phase, the probability density function is assumed to be

stationary, and the learning rate ψ is adjusted so that it

converges quickly to the expected mean and variance.

After the learning-phase, the system classifies pixels

(Xn
i, j) as foreground or background for each frame.

The classification process computes a grey-level dif-

ference map (D) for frame n such that

Dn(i, j) =


|Xn

i, j − µn
i, j|, if |Xn

i, j − µn
i, j| > 3(σn

i, j);

0, otherwise.
(4)

If a pixel is classified as background (the grey-level

is set to 0), then the mean and variance for that pixel

are updated using equations (2) and (3) with ψ = 1
ε
, so

that the observation is weighted more heavily, and the

background model adapts faster to global environmental

changes.

If a pixel is classified as foreground, then it is not

immediately incorporated into the background model.

Instead, a short term average x̄ of foreground pixel in-

tensities is calculated for a user-specified delay num-

ber of foreground observations. After delay number of

foreground observations, the mean and variance are up-

dated with x̄. This crucial step helps to prevent slow-

moving homogenous targets from being learnt into the

background model, while at the same time ensuring that

false-positive classifications are incorporated into the

background model. The choice of the delay parameter

is related to the size of homogenous targets in the scene.

If there is a large oil-tanker that has a uniform intensity

distribution, then a large delay parameter is needed to

prevent the background model from learning and con-

verging to the target intensity distribution. However,

the greater the delay parameter, the longer it will take to

absorb undesirable foreground pixels (false classifica-

tions). Environmental conditions and target profiles for

which the maritime system is deployed, provide impor-

tant context for a reasonable choice of the delay parame-

ter. Furthermore, the sensitivity of the tracking system

on the choice of the delay parameter is greatly reduced

by post-processing the foreground-background classifi-

cation, and the choice of tracking algorithm.

4. Spatial Smoothness

Usually the motion-cues generated by the back-

ground subtraction algorithm require some form of

post-processing to remove false positives, and to re-

cover false-negatives. Two frequently applied tech-

niques are those based on mathematical morphology

and Markov random fields (et al., 2006(@). Both these

methods are based on established mathematical frame-

works, and their underlying assumption is that motion-

cues should be spatially smooth since the world con-

tains spatially consistent entities. Sometimes heuristic

methods are employed to enforce spatial consistency,
7



  

but because of their ad-hoc nature, the flexibility and

accuracy of such heuristic approaches are not well un-

derstood. Another reason why heuristics are often used

is because they are usually computationally faster than

more principled spatial regularization techniques.

To improve on the motion-cues generated by the

background subtraction model, we present a fast heuris-

tic spatial-regularization method.

4.1. Heuristic Spatial Regularization

Recall from equation (4), a pixel’s deviation from its

expected value is stored at location Dn(i, j), only if the

deviation is greater than 3σ. The deviation can be in-

terpreted as the strength of our belief that the pixel is

a foreground observation. The further away a pixel is

from our classification threshold of 3σ, the greater our

belief that it was a correctly classified foreground obser-

vation.Hence we refer back to Dn(i, j) and manipulate it

such that

D̂n(i, j) =


255, Γ > λ × r × c;

Dn(i, j), otherwise
(5)

where

Γ =

p=r∑

p=−r

q=c∑

q=−c

wi+p, j+q × Dn(i + q, j + q), (6)

parameters r and c specify a window size, and

wi+p, j+q is a weight. The parameter λ is empirically

chosen. The discovery of an appropriate value for λ in-

volves inspecting Dn(i, j) for a variety of scenes that are

representative of the domain of interest. In our case, we

noted that for the majority of the time, targets produced

values in Dn(i, j) > 20. False positives due to global

lighting changes usually produced values less than 20.

For this reason a value of λ = 20 was chosen. This

value produced consistently good results for drastically

different targets and environmental conditions (includ-

ing rain). With this λ, equation (5) can be interpreted as

only labeling a pixel as definite foreground, if the aver-

age pixel deviation in a specified window size is greater

than λ.

Some ocean waves are misclassified as foreground

with this approach, but because of the nature of our

tracking algorithm they usually do not affect the re-

sult of our tracking. The most significant result of this

method, is that very small targets are often at least par-

tially reconstructed.

Of course it is also possible to determine a value

of λ adaptively, by using any histogram thresholding

technique such as Otsu or maximum entropy (et al.,

1988(@). However, experiments suggest that it is more

appropriate for an operator of the system to tweak the

parameter depending on the environment that the sys-

tem is deployed in.

Since this heuristic involves calculating sums over

a sliding-neighborhood, a very fast implementation is

possible that is based on dynamic programming (et al.,

2007(@). The implementation takes advantage of the

fact that there are many values that overlap when cal-

culating the total sums in a sliding neighborhood, and

these values need not be recalculated. Refer to Fig. 1

for an illustration.

A spatial regularization method based on threshold-

ing on the area of a connected component is not a suit-

able alternative, because often the targets themselves are

smaller than some of the noise that appears in the im-

age. Similarly, applying mathematical morphology op-

erations such as opening and closing can be problematic

since small structures are also removed with these tech-

niques.
8



  

(a) (b)

Figure 1: Fast Summation with sliding window a) For

a neighborhood centered around the value 11 (circled),

the sum of each column is stored in an array. b) When

the window is moved to right (circled), some values still

overlap (shaded grey). To calculate the new sum, the

value stored in array[0] needs to be subtracted and only

array[3] needs to be computed and added.

5. Tracking Using Level-Sets

To track a ship on the ocean, the spatially smoothed

motion-cue image has to be segmented. Recall that the

background subtraction method produces a grey-level

image that shows the deviation of a pixel from its ex-

pected value. Some pixels in this image are subse-

quently marked as foreground (white) by either of the

proposed smoothness regularization methods, resulting

in an image that can be viewed as bimodal and piece-

wise constant. From this perspective, we can regard the

segmentation of the motion-cue image as the evolution

of a level-set based active contour, driven by the min-

imization of a Chan-Vese energy function. An active

contour is a closed curve that is placed on an image and

evolved with time, so that it demarcates the outline of

a region of interest in the image when energy associ-

ated with the curve is minimized (et al., 1988(@). The

evolution of this curve can be tracked by embedding the

curve in a higher dimensional function, and evaluating

this function on a fixed Cartesian grid (et al., 1995(@).

More formally, the position of a curve C in the

motion-cue image D̂n(i, j), is embedded in a function

φ(x, y, t) such that

C(x, y, t) = {(x, y) : φ(x, y, t) = 0}. (7)

The variable t is an artificial time that is used to evolve

a curve during the energy minimization process. The

level-set function is initialized with

φ(x, y, t = 0) = ±d (8)

where d is the distance of (x, y) to the initial contour

C(x, y, t), and the plus/minus sign is chosen if (x, y) is

inside/outside the contour C.

To evolve the curve, the function φ is traditionally up-

dated at each grid-point (x, y) in the image according to

a speed function F(x, y, t). Narrow-band methods only

update the level-set function φ close to its zero level-set

to reduce the number of computations. The rational be-

hind this approach is that the curve is unlikely to grow

or shrink by a large margin between iterations, and so it

is unnecessary to update φ for every point on the grid.

The spatio-temporal partial differential equation that

governs the evolution of the level-set function is given

by

∂φ(x, y, t)
∂t

+ F(x, y, t)|∇φ(x, y, t)| = 0, (9)

given φ(x, y, t = 0). The solution of equation (9) is

obtained by using finite difference approximations for

the spatial and temporal derivatives (et al., 2007(@).

The speed function F(x, y, t) controls how the contour

evolves and where it stops. There are many ways to

define the speed function, depending on the kind of seg-

mentation that is needed and the characteristics of the

image itself.
9



  

(a) (b) (c) (d)

Figure 2: Effect of the contour position on the Chan-

Vese speed function a) F1 > 0 and F2 ≈ 0 b) F1 > 0

and F2 > 0 c) F1 ≈ 0 and F2 > 0 d) F1 ≈ 0 and F2 ≈ 0.

(a) (b) (c) (d)

Figure 3: Local minimum with Chan-Vese energy a)

Contour is initialized on the boundary of the image. b)

All objects are segmented with position in (a). c) Con-

tour is initialized inside the object of interest. d) Only

the object of interest is segmented.

A speed function that is frequently used to drive an

active contour to the boundary of a bimodal image is

the Chan-Vese (et al., 2001(@) energy.

5.1. Chan-Vese Energy

Chan and Vese (et al., 2001(@) proposed to minimize

an energy F = F1 + F2 with

F1 =

∫

Ω1

|D(x, y) − c1|2dxdy,

and (10)

F2 =

∫

Ω2

|D(x, y) − c2|2dxdy,

where Ω1 = {(x, y) : φ(x, y) > 0} and Ω2 = {(x, y) :

φ(x, y) < 0}. The variables c1 and c2 are the aver-

age intensities inside and outside the evolving curve re-

spectively, which are recalculated for each iteration of

the curve evolution. The original equation proposed by

Chan-Vese had extra terms that minimized the length of

the zero level-set, but the crux of the energy is contained

in equation (10). The energy is at its minimum when the

contour separates the foreground from the background

(refer to Fig. 2).

Chan and Vese also explained how this energy can be

incorporated into the level-set framework, but instead of

reproducing all of the equations here we refer the inter-

ested reader to their seminal work (et al., 2001(@).

One of the main drawbacks of the level-set method is

that it is computationally expensive because partial dif-

ferential equations have to be solved. To overcome the

computational burden, we make use of a real-time al-

gorithm for the approximation of level-set based curve

evolution (et al., 2008(@). This approximation falls

into the class of narrowband techniques, with the ad-

vantage that partial differential equations do not need to

be solved in order to evolve the contour. This method

has already been used successfully for some tracking

applications in (et al., 2006a(@). The algorithms for in-

corporating the Chan-Vese energy into this framework,

are discussed in detail in (et al., 2006b(@) and (et al.,

2008(@).

6. Discussion of the Model and Techniques

One of the properties of the Chan-Vese energy is that

it is prone to converging to a local minimum (et al.,

2006(@). That is why the segmentation result can vary

depending on where the contour is initially placed in the

image. This is illustrated in Fig. 3.

Considerable work has been done to prevent the

Chan-Vese energy from converging to a local minimum

(et al., 2006(@) and (et al., 2006b(@). However, when

tracking it is actually desirable for the active contour to

converge to a local minimum, to keep the contour on the
10



  

target and to prevent it from segmenting noise or other

structures that can appear in the image (et al., 2003(@).

It is the property of converging to a local minimum

that makes an active contour driven by the Chan-Vese

energy a particularly useful tracking method in mar-

itime sequences. If the contour is initialized so that it

at least partially touches the target, it will only converge

on the target and ignore any false positives such as white

foam cusps that occur in other regions of the image.

This makes it very robust against false-positive classi-

fications as long as the false-positive classifications are

not connected to the target.

The misclassified ocean pixels are usually as a result

of the dynamic motion of the sea, and most frequently

are the white foam cusps, sunlight reflections or shad-

ows. The important property of these naturally occur-

ring observations on the sea is that they are transient.

White foam will fizzle out and highlights will appear

and disappear with the rise and fall of ocean waves. If

the active contour happens to segment a body of foam in

one frame, it will shrink and disappear together with the

foam, which means that after a short while the system

will not track the false-positive anymore. Ships on the

other-hand do not fizzle out and disappear.

The algorithm for detecting new targets in a scene,

and keeping the active contour trapped in a local min-

imum is described in Algorithm 2. Clearly there is a

tradeoff between keeping an active contour trapped in a

local minimum, and detecting new targets in the scene.

This tradeoff is handled by using two active contours, P

and C. The first active contour P is the probing active

contour, and the second active contour C is the track-

ing active contour. Every t seconds, the contour P is

re-initialized to the border of the image, so that it can

be used to detect new targets in the image. Ideally, the

paramater t is longer than the time needed for a tran-

sient false-positive such a foam to fizzle out (in practice

only a few seconds are needed). The contour C uses

the topology of P just before it is re-initialized, as its

subsequent initial curve placement. Thereafter, the con-

tour C always uses its final position in frame fn−1 as its

initial position in frame fn (which will result in a local

minimum). In this way, any new targets that have been

detected by probe P are passed on to curve C, which in

turn continues to track targets since it will be trapped in

a local minimum (refer to Fig. 4).

Algorithm 2 Tracking with level-Set

1: if user-specified amount of time t has elapsed then

2: initialize the contour C with the topology of con-

tour P

3: Initialize the contour P to the border of the image

4: else

5: Use the position of the contour C in the previous

frame as the initial position in the current frame

6: Use the position of the contour P in the previous

frame as the initial position in the current frame

7: end if

This form of tracking is computationally less expen-

sive than an alternative approach that labels all con-

nected components in an image in each frame, and tries

to predict the motion for each of these components. It

also handles the joining and splitting of occluded targets

within one framework.

6.1. Performance Comparison

Most false-positive foreground classification of our

method is due to cusps of white foam forming on ocean

waves. The foam is among the brightest intensities that

can be observed in a grey-level image, and hence always
11



  

(a) (b)

(c) (d)

Figure 4: Tracking with level-set by exploiting local minima a) Original image. b) Initial segmentation. The active

contour includes ocean pixels in its segmentation. c) After 25 frames elapse only the two ships are tracked because

the contour was trapped in a local minimum around the targets. d) After 200 frames elapse the active contour is still

segmenting the targets only.

far away from the mean intensity of the ocean waves.

The white cusps form randomly, and compared to other

ocean wave intensity observations, occur infrequently at

the same pixel. This means that even with kernel density

estimation, it is difficult to build a robust probabilty den-

sity function to classify the white foam correctly. The

problem is exacerbated by the fact that large portions of

ships such as sails can also be white.

Many background subtraction methods are not suit-

able models for our application domain, because they

are either computationally expensive (et al., 2008(@),

or because they require color images to perform well

(et al., 2008a(@).

With this in mind, we discuss the performance of

some other candidate background subtraction models in

the following sections.

Mixture of Gaussian. The background subtraction al-

gorithm that has probably received the most attention is

the mixture of Gaussians approach, in which the proba-

bility density function of a pixel is assumed to be multi-

modal. The probability that a pixel at location (i, j), in

frame n has intensity Xn
i, j is calculated with

P(Xn
i, j) =

K∑

i=1

wi√
2πσ2

e−
(Xn

i, j−µ
n
i, j)2

2σ (11)

The number of modes, K, is often a user-specified pa-

rameter, but extensions to the model do cater for adap-

tive estimation of the number of required modes (et al.,

2006a(@) (et al., 2006(@). As the background model
12



  

(a)

(b)

(c)

Figure 5: Sample maritime scenes used for comparison

of background subtraction a) Two small and very slow

moving ships in the horizon b) Well-contrasted ships on

some choppy waters c) Two small ships with one fol-

lowing the other

evolves, so do the weights and variances of the K Gaus-

sians. A foreground/background decision for a pixel

is generally made by first ordering the Gaussians ac-

cording to their weights and variances. Gaussians that

have a high-weight (many observations) and a low vari-

Figure 6: The F2-Scores of different background sub-

traction algorithms on maritime scenes

ance are assumed to represent the background, while

Gaussians with a small weight (few observations) and a

high-variance are assumed to represent the foreground.

If a pixel is close to the Gaussian with high-variance

and low weight (using an appropriate distance measure),

then it is classified as foreground.

Since white cusps occur proportionally less than

other intensities associated with ocean waves, the

Gaussian assigned to the white cusps will have a dras-

tically lower weight, and will be used to represent fore-

ground pixels. The foreground/background classifica-

tion of white foam is then the same as with a single

Gaussian model.

Sigma-Delta. For unimodal distributions, another mea-

sure of central tendency is the median. A computation-

ally efficient recursive approximation of the temporal

median was used in (et al., 1995(@). By defining two

sets,

φ1 = { fk(i, j), if fk(i, j) < a}; (12)

φ2 = { fk(i, j), if fk(i, j) > b}, (13)

the most probable value of the median will then lie in

the interval

b ≤ median(i, j) ≤ a, if |φ1| = |φ2|. (14)
13



  

The variables a and b both belong to the interval [0,G−
1], where G represents the number of grey-levels in the

image; the variable fk(i, j) has already been defined in

section 3.2.

This observation gives rise to a very fast approxima-

tion of the median, whereby median(i, j) is incremented

by a constant if the observed intensity Xn
(i, j) is greater

than the median, or decremented by a constant if it is

less than the median.

Unfortunately, this approach still classifies white

cusps as foreground because the white cusps, are ob-

served much less than half the time for a pixel.

In (et al., 2004(@) and (et al., 2007(@), this form

of median estimation is interpreted as the simulation

of a digital conversion of a time-varying analog sig-

nal using sigma-delta modulation. The authors build

on this notion by computing the time-variance of pix-

els which are used to represent a motion activity mea-

sure. This measure is used to decide whether pixels are

more likely moving or stationary, and add more knowl-

edge into the final segmentation decision than just using

the median estimation alone. The authors also mention

that the Sigma-Delta background subtraction algorithm

is not well suited for environments that exhibit wide

amplitude periodical motion, and mention sea-surges as

an example of where the algorithm does not perform

adequately. Our experiments with this algorithm con-

firm this observation. By updating the median estimate

median(i, j) for each frame, the algorithm often learns ho-

mogenous objects into the background too quickly. On

the other hand, by updating the median estimate every

jth frame, the number of ocean pixels that are misclas-

sified as foreground increases considerably.

Experimental Comparisons. We have applied the mix-

ture of Gaussians and Sigma-Delta background subtrac-

tion algorithms to a variety of maritime scenes and have

experimented with different learning rates and other pa-

rameters for both algorithms. The greatest challenges

for a background subtraction algorithm in the maritime

domain are dealing with the poor contrast between the

targets and the ocean, white foam cusps that form spo-

radically on the surface, slow and small moving ships

that are almost homogenous, and fast global lighting

changes. Neither the mixture of Gaussians nor the

Sigma-Delta algorithm could deal with these problems.

Using a mixture of Gaussians to model ocean waves

provided little empirical benefit, since the distribution

of an ocean pixel was usually unimodal, and hence the

computational complexity of using several mixtures was

unwarranted. The Sigma-Delta algorithm consistently

produced more false-positives than a single Gaussian or

a mixture of Gaussians, and was more prone to learn-

ing parts of moving homogenous vessels into the back-

ground.

The proposed background subtraction method consis-

tently outperformed the two background subtraction al-

gorithms described above on a variety of scenes. To

quantify this, we compared on three different maritime

image sequences. For each sequence we sampled five

frames , and hand-labelled ground truths. The maritime

sequences are displayed in Fig. 5.

The first sequence is the most challenging because the

two targets are very small, and also exhibit very slow

motion because they appear distant in the horizon.

In the second sequence the contrast between the ships

and the ocean is quite good because of the white sails,

but the ocean is noisy with glint and white foam cusps.

The third sequence contains two small ships, with the
14



  

one ship chasing the other. The ships are homogenous

and there are several local and global lighting changes

that occur.

To quantify the performance of the different methods

on these sequences, we use precision and recall, defined

as

recall =
True Positive

True Positive + False Negative
, (15)

and

precision =
True Positive

True Positive + False Positive
. (16)

In this context recall is the ratio of the number of

foreground pixels correctly identified to the number of

foreground pixels in the ground truth, while precision

is defined as the number of foreground pixels correctly

identified by the foreground algorithm to the number of

foreground pixels detected (et al., 2008b(@).

These two measures can be combined by calculating

a F-Score, defined as a weighted average of precision

and recall (et al., 2005(@). The F-Score, denoted Fβ,

reaches its best value at 1 and its worst value at 0, and

is defined as

Fβ =
(1 + β2) × recall × precision

(β2 × precision) + recall
, (17)

where β is a parameter that allows us to weigh recall

more than precision or vice-versa. This is an impor-

tant property of the F-Score, and is the primary reason

why this measure was chosen. Recall from section 1.3

that a maritime surveillance system should produce no

false-negatives and a minimal number of false-positives.

A background subtraction algorithm should reflect this

property, and for this reason recall was weighted twice

as much as precision by setting β = 2 when calculating

F2 − S cores. The results of the experiments are pre-

sented in Fig. 6. The number of modes in the mixture

of Gaussian was set to K = 3, and the ’best’ learning

rate was chosen empirically by considering the result-

ing classification. A similar visual inspection was per-

formed for the choice of the ’best’ Sigma-Delta parame-

ters. The parameters for all three algorithms were kept

constant for all test sequences.

7. Experimental Results

Our tracking algorithm was tested on numerous mar-

itime sequences that were captured at two different field

tests, in two different locations. The test sequences con-

tained ships of different sizes, and were taken at dif-

ferent times of day under varying weather conditions.

A camera mounted on a tripod was allowed to pan and

tilt, and captured high-resolution images of dimension

1024 × 512. We present both qualitative and quantita-

tive results. Our discussion of the performance of the

algorithm is based on rigorous tests on 30 different se-

quences, as well as empirical observations during the

real-time field test. Some of these additional results

have been submitted to the publisher as supplementary

material.

To achieve reasonable performance on images of di-

mension 1024 × 512, we parallelized the background

subtraction and spatial smoothness regularization al-

gorithms by decomposing the image into p windows,

where p refers to the number of cores on the CPU. Each

image window was assigned to one of the p cores. On a

2.0 GHZ dual-core processor, our system could process

approximately 17 FPS with a Java implementation of

the algorithms. This result strongly suggests that real-

time performance can be achieved with a careful opti-

mized C++ implementation on an off-the-shelf multi-

core computer.
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The parameters for the learning rate in the back-

ground subtraction model, and any thresholds for spa-

tial smoothness regularization were kept constant for all

test images. In practice however, it is desirable to allow

an operator to tweak these parameters depending on the

characteristics of the targets that are to be tracked, and

the environmental conditions (recall section 3.2).

7.1. Quantitative Results

The easiest way to verify that our algorithm correctly

tracks a target in a scene is to view the video sequences

and to see the extracted silhouette. To more precisely

quantify the result, we hand-labelled each frame of the

test sequences, by drawing the minimum bounding box

around a target. If the center of mass of an active con-

tour fell inside the minimum bounding box of the target,

the contour was considered as having correctly tracked

the target. If the center of mass of an active contour

fell outside the minimum bounding box, we labelled the

contour as a false-positive.

For each of the test sequences below, we applied

a pseudo-coloring to the original grey-level images to

make the targets and any highlight and shadows on the

ocean more visible (see Fig. 7). This pseudo-coloring

is for display purposes only.

7.1.1. Test Sequences

The first test sequence consists of two very small tar-

gets, a patrol boat and a Jetski. The results of the track-

ing process are presented in Fig. 8 a)-d). Fig. 9a shows

that initially a lot of white foam on the ocean was seg-

mented by the active contour, but after approximately 20

frames (less than one second) the contours are trapped

in a local minimum around the two targets for the entire

test sequence. This is confirmed in Fig. 9b.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p)

Figure 8: Tracking results on sequences 1-4. a)-d) Con-

tours of the patrol boat and Jetski for sequence 1. e)-h)

Contours of the sailboat for sequence 2. i)-l) Contours

of sailboats with occlusions for sequence 3. m)-p) Con-

tours of open boat and patrol boat for sequence 4.
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(a) (b)

(c) (d)

Figure 7: Pseudo-Colored test sequences a) Test sequence 1 b) Test sequence 2 c) Test sequence 3 d)Test sequence 4

The second test sequence consists of a sailboat. For

this test sequence the camera panned very sharply twice,

introducing a new horizon. The results of the tracking

process are presented in Fig. 8 e)-h). Fig. 9c shows a

spike in the number of false positives starting at approx-

imately frame 500. This corresponds to the moment the

camera was panned sharply, and because the tip of the

sailboat was very close to the horizon, the active contour

spilt over to segment the mountains. This also explains

the loss of the target in Fig. 9d in frame 500. Notice

however, that the system recovers once the mountains

are learnt back into the background and the active con-

tour is once again trapped in a local minimum around

the target.

The third test sequence consists of two sailboats. This

sequence is of interest because it demonstrates the abil-

ity of the active contour to recover from complete occlu-

sion. The larger sailboat passes in front of the smaller,

but after it passes the contour splits, changes topology

and continues to track both the larger and the smaller

sailboat. The results of the tracking process are pre-

sented in Fig 8 i)-l). The temporary loss of the second

target in Fig. 9f from frame 120 to 270 corresponds to

the occlusion of the smaller sailboat.

The fourth test sequence consists of a open boat chas-

ing a patrol boat while it is raining. The camera also

pans and the two targets occlude each other towards the

end of the sequence as the patrol boat changes direc-

tion and the open boat tries to follow. The results of

the tracking process are presented in Fig 8 m)-p). The
17



  

loss of the open boat in Fig. 9h is due to the occlusion

and camera pan. The camera pans during the occlusion.

The open boat would have been detected again if we had

made use of the probing active contour in this sequence

(recall the discussion of the use of the probing active

contour in section 6 ).

7.2. Qualitative Results

To study the properties of our proposed methods and

techniques more holistically, we summarize the general

performance of the tracker for different environmental

conditions in Table 1. The results in the table are sorted

according to weather, and reflect our general empiri-

cal observations. We rate a result as very good, if the

tracker never looses the target and if no false positive

targets are detected. A result is good, if the tracker oc-

casionally looses the target but recovers it shortly there-

after, and there were less than 5 false positives. Finally,

the tracker fails when there are too many false positives,

or if the intended target is not localised at all. There

are primarily three scenarions where the tracker fails.

Firstly, when the contrast of the target to the ocean is

very low and the background subtraction method fails

to detect motion. Secondly, when the target is stationary

or drifting very slowly (as in sequence 10, in Table 1).

Finally, when there is a lot of glint in the scene. Oth-

erwise, the proposed method performs very well with

very few false positives.

8. Discussion and Conclusion

The general observations from the 30 test sequences,

and the observations during the live field trials, sug-

gest that if a target can be detected by the proposed

background subtraction process, then very good track-

ing results can be obtained by using a fast active con-

tour driven by the Chan-Vese energy. The strength of

this approach lies in the property of the active contour

being trapped in a local minimum around the target. An

attractive property of the method presented in this paper

is that it can run in real-time on high-resolution images,

and can be parallelized without much difficulty. Un-

like tile-based segmentation methods, even tiny targets

can be detected and tracked as in test sequence 1. More

segmentation results from different scenes with different

ship can be found in Fig. 10.

When the contrast between the ocean and the target is

very poor, the background subtraction process will fail

to detect the motion of the target, and subsequently the

active contour will fail to localize the target too. Dealing

with very low contrast targets in a dynamic ocean scene

is one of the future works we intend to pursue. Simply

lowering the threshold for the foreground/background

decision does not work since it produces too many false

positives, and any possible solution has to take compu-

tational efficiency into consideration. When there is a

lot of glint in the image our current background subtrac-

tion approach produces too many false positives. This

is because parts of waves that form will appear almost

white, and therefore produce strong foreground obser-

vations when compared to the expected intensity of an

ocean pixel (see Fig. 11 for an example). Our ex-

periments with a mixture of Gaussians to model these

scenes did not improve the results substantially. The

reason for this is that the camera does not look at the

same scene for an extended period of time, but instead

has to quickly find a target and pan to follow its path.

This means that there is usually insufficient time to build

up a bimodal distribution that includes the white ob-

servations. Finding a suitable method for dealing with
18



  

Table 1: Qualitative Tracking Results

Sequence Targets Approx. Target Size (Pixels) Resolution Weather Result

5 Tanker 1930 1080 by 440 Overcast V. Good

Speedboat 450 V.Good

6 Speedboat 200 1080 by 440 Overcast V. Good

Jetski 20 1080 by 440 Overcast V. Good

7 Speedboat 80 1080 by 440 Sunlight Good

Jetski 20 1080 by 440 Sunlight Good

8 Sailboat 2100 1024 by 512 Sunlight V. Good

Jetski 80 Good

9 Sailboat 2000 1080 by 440 Sunlight V. Good

Speedboat 140 V. Good

Jetski 24 Good

10 Speedboat 280 1080 by 440 Clear Sky Fail

Jetski 25 Clear Sky Good

11 Sailboat 1500 1024 by 512 Clear Sky V. Good

12 Sailboat 5900 1024 by 512 Clear Sky V. Good

13 Sailboat 2600 1024 by 512 Clear Sky V. Good

Sailboat 220 1024 by 512 Clear Sky V. Good

14 Open boat 280 1024 by 512 Light Rain Good

Speedboat 450 V. Good

15 Open boat 250 1024 by 512 Heavy Rain Good

Speedboat 450 Good

16 Speedboat 900 1080 by 440 Glint Fail

17 Speedboat 800 1080 by 440 Glint Fail
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scenes that contain considerable glint and heat shimmer

is also part of our future work.

Another avenue for future work lies in the motion-

cue generation. When a target is almost homogenous

it is difficulty to maintain a tradeoff between learning

environmental changes into the background model, but

not learning the target itself into the background model.

From an optical-flow perspective, large parts of ho-

mogenous targets produce ambiguous motion vectors

(the so-called blank wall problem), and hence even op-

tical flow has difficulty in tracking such targets. There

is a need for new insight into dealing with these issues.

The next step of our work will involve relaxing the

stationary camera assumption, since the camera will ul-

timately be mounted on a moving ship. We also intend

to use outlines of the ships to classify targets in a scene,

to deal more explicitly with occlusions and to create a

higher-level scene understanding.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Quantitative tracking results. {(a),c),e),g)}
The number of active contours whose center of mass

did not lie inside the minimum bounding box of the tar-

get. (b),d),f),h)) The number of targets detected in each

frame.

(a) (b) (c)

(d) (e) (f)

Figure 10: Further segmentation results. a) Motor boat

b) Jetski and patrol boat c) Jetski d) Sailboat e) Motor

boat f) Sailboat

Figure 11: Example of poor contrast between target and

ocean with glint.
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