DESIGN AND IMPLEMENTATION OF AN INTERACTIVE INTERFACE FOR POWER
PLANT SIMULATION

Zygmunt L. Szpak and Jules R. Tapamo

School of Computer Science
University of KwaZulu-Natal

Durban, 4062, Republic of South Africa
Email: zygmunt.szpak @cs.ukzn.ac.za and tapamoj@ukzn.ac.za

KEYWORDS

Computer Aided Design, Graphical Model Builder,
Brayton and Rankine Cycle, Powerplant Simulation

ABSTRACT

A large number of useful software was written at a time
when graphical user interfaces were not the norm. By
current standards these programs are often dismissed as
being difficult to use and are ignored. Brakine is one
such program. Brakine is a powerful design and simula-
tion system of arbitrary energy systems that operate on
the thermodynamic principles of the Brayton and Rank-
ine cycles. It suffers from a very tedious user interface
and has fallen largely out of use. This project creates
a new visual user interface for Brakine that facilitates
the design of the simulation by providing functionality
to draw the entire simulation on screen. The tedious task
of generating the text input file and reading the text out-
put file is taken away from the user. The graphical user
interface generates the correct input file for the simula-
tion by taking into account the inter-connectivity of the
components that have been drawn on the screen and the
simulation parameters that have been assigned to these
components. The results of the simulation are displayed
by labelling the connections between components. This
aids in the overall understanding and interpretation of the
simulation.

1. INTRODUCTION

One of the greatest contributing factors for the failure of
software in the marketplace, is a badly designed user-
interface (Hobart, 2001). If end-users feel that the learn-
ing curve of the software is too steep they will quickly
abandon the product in search of something that is more
user-friendly. Many valuable programs are never utilized
to their full potential because of steep learning curves.
The reason why such a large number of programs end
up unusable is because their user-interfaces were imple-
mented as an after-thought, instead of being integrated
tightly into the development cycle.

With the introduction of Windows as a world-wide op-
erating system, end-users have come to expect a user-
interface that is visually driven. Programs that operate in

Proceedings 23rd European Conference on Modelling and
Simulation ©ECMS Javier Otamendi, Andrzej Bargiela,
José Luis Montes, Luis Miguel Doncel Pedrera (Editors)
ISBN: 978-0-9553018-8-9 / ISBN: 978-0-9553018-9-6 (CD)

Joe Roy-Aikins
School of Mechanical Engineering
University of KwaZulu-Natal
Durban, 4041, Republic of South Africa
Email: aikinsj@ukzn.ac.za

text-mode are judged to be archaic and are quickly dis-
missed. Unfortunately, there are many useful and rele-
vant programs that were programmed when a text-mode
user-interface was still the norm. A new visually driven
interface must be designed for these types of programs
before they fall completely out of use.

The aim of our work is to design and implement an in-
teractive visual user-interface for Brakine (Roy-Aikins,
1995). Brakine is a versatile design and simulation sys-
tem of arbitrary energy systems that operate on the ther-
modynamic principles of the Brayton and Rankine cy-
cles (Cengel and Boles, 2006). It is text-mode driven and
suffers from a very tedious user-interface. As such its
use is severely limited and it has never been introduced
into the classroom. The new visual user-interface will
resolve some of the biggest obstacles a user experiences
when working with the Brakine simulation and will fa-
cilitate the drawing of engineering diagrams so that the
entire simulation, including the results, can be displayed
on screen in an interactive manner.

The rest of this paper is organized as follows. We start
by presenting an overview of the Brakine software and
its limitations. Section 3 presents related work and in
section 4 we delve into the architecture of our solution.
In section 5 we provide a description of JGraph. Section
6 looks at some key functionalities of our software and
7 examines the results and limitations. Finally section 8
concludes our work and provides suggestions for future
work.

2. Background

The Brakine simulation program was written in Fortran
and designed at a time when graphical user interfaces
were not the norm. As such it is text-mode driven and
relies on the user to type an input file that specifies infor-
mation for the simulation. The results of the simulation
are then written to an output file.

It is the generation of the input file that poses the
biggest problem. Generating the input file is a daunting
task because the input file has to adhere to a very strict
structure and the amount of information that the user has
to specify can also be overwhelming. The entire design
of the system including the inter-connectivity between
components, all simulation parameters and other infor-
mation such as scheduled data have to be typed out. This

is a very tedious and time consuming process. It is also a
Very error-prone process.

Before the input file can be created the user draws a
mechanical engineering diagram of the system that will
be simulated. This has to be done on paper because there
is no functionality in the simulation program to allow the
user to draw diagrams. If the drawing is accidentally lost
or misplaced it becomes very difficult to visualize the de-
sign of the system, because the input file by itself is rather
obscure.

The simulation software was originally designed as
a teaching tool for mechanical engineering students be-
cause commercial software was too expensive. However,
students could simply not overcome the very steep learn-
ing curve of this tool. For these reasons the software has
fallen largely out of use.

In this paper we present the design and the implemen-
tation of an interactive interface that will allow the user
to draw the mechanical engineering diagram on the com-
puter. The input file for the simulation program will be
generated automatically based on the diagram that the
user has drawn and the properties the user has assigned
to the mechanical engineering components via the graph-
ical user interface. This will remove the burden of typ-
ing the input file from the user. Furthermore the inter-
active interface will display the results of the simula-
tion by labelling the connections between components so
that the user can visualize the outcome of the simulation.
By placing great emphasis on making the interface user-
friendly the Brakine simulation software can be brought
back into use.

3. Related Work

Several computer aided design tools for power plant
simulation have already been reported in the literature.
One of these initiatives is called Modular Modeling Sys-
tems Model Builder (MMSMB) (McKim and Matthews,
1996). With this program a user can quickly build a
simulation by selecting from a library of pre-configured
power plant components to dynamically simulate their
operation. Simulation code is automatically generated
by taking the connectivity and parameters of different
components into account. Another power plant simu-
lation tool that was developed recently is called Power-
Sim (Kim et al., 2005). It is targeted at the Korean mar-
ket and aims to be a more flexible power plant design
tool than MMSMB by allowing the user to integrate new
custom-made components into the power plant compo-
nent library. The modeling tool Modelica has also been
used as a platform for power plant simulation, however
the work of (Casella and Leva, 2003) is incomplete as
many components such as compressor, turbine or com-
bustion chambers still need to be developed. The funda-
mental difference between our work and related work is
that their scientific visualization of the simulation was
planned and integrated into the design of the program
from the start of the development cycle. In our case, we

are integrating a visualization tool with a simulation pro-
gram that was not designed for one, and report on the
issues that arise in such an endeavor. One of the first
problems is identifying the best tools that will facilitate
the intergration of the visualisation functionality.

Generating the correct input file for the simulation
based on the diagram the user has drawn and the prop-
erties the user has assigned requires knowledge of the
structure that the input file must adhere to and is unique
to this project. However, a lot of previous work has been
done in generating an interactive user-interface that facil-
itates the drawing of diagrams.

There are numerous Java libraries that assist in the
drawing of diagrams, each with their own advantages
and disadvantages. The leading commercial libraries
are yFiles (yWorks, 2009) and Tom Sawyer Software
(Tom Sawyer Software, 2009). They provide numerous
layout algorithms as well as a plethora of other features.
They are however expensive and the source code is not
available meaning that they cannot be customized.

In terms of open-source software libraries there are
also a lot to choose from. The Java Universal Net-
work/Graph Framework (O’Madahain et al., 2003) is
an open-source software library designed to support the
modelling, analysis, and visualization of data that can
be represented as graphs. Its emphasis is on mathemat-
ical and algorithmic graph applications pertaining to the
fields of social network analysis, information visualiza-
tion, knowledge discovery and data mining. It is ideal
for fast rendering of very large graphs but it is not suit-
able for this project because even though the mechanical
engineering diagram that the user draws is essentially a
graph, a lot more detail and control is needed for the de-
sign and layout of the diagram than the library provides.

Another very recent Java library that is rapidly gaining
popularity is Prefuse (Pendleton et al., 2007). Prefuse is a
Java-based toolkit for building interactive information vi-
sualization applications. It provides optimized data struc-
tures for tables, graphs, and trees, a host of layout and
visual encoding techniques, and support for animation,
dynamic queries, integrated search, and database connec-
tivity. Once again, it is targeted at very large graphs and
some of the features like optimized data structures are
not required for this project. Hence is also not suitable.

There are many other Java graph drawing libraries that
are available but they either have very poor documenta-
tion or are no longer being developed.

A notable exception to this is JGraph (Alder and Ben-
son, 2001). JGraph is a flexible Swing graph visualiza-
tion and layout library. JGraph is specifically orientated
towards design layout, like the popular Microsoft Visio
(Microsoft, 2007). It is probably the most well known
open-source graph visualization library currently avail-
able and has a very vibrant user community. It is actively
maintained and comes with an excellent free user manual
and numerous example programs. The community forum
is also very active and posts are made on a daily basis.

JGraph has been used for numerous applications that

are related to this project in terms of interface design.

Aigner and Mikisch (Aigner and Miksch, 2004) made
use of the JGrpah library to develop an interactive visu-
alization method for computer supported protocol-based
care in medicine.

JGraph was also used by (Hanish et al., 2004) to create
a tool for interactively exploring the meaning of expres-
sion experiments in context of biological networks.

Valyi (Valyi and Ortega, 2004) used JGraph to create
an open source simulation platform dedicated to systems
ecology and emergy studies called Emergy. Emergy is an
efficient graph sketcher that allows users to draw an en-
ergy diagram while providing an intuitive drag and drop
interface, high standard graphical features and an exten-
sible interactive and multilingual help system.

Reyes (Reyes, 2004) created a prototype StreamIT
Graph Editor using the JGraph library. StreamlIT is a lan-
guage for the development of streaming applications that
has a hierarchial and structural nature that lends itself to
a graphical programming tool. The StreamIT Graph Ed-
itor provides intuitive visualisation tools that allows de-
velopers to work more efficiently by automating certain
processes.

Commercial companies have also used JGraph in their
applications.

Clearly the JGraph library is well suited to design a
very user-friendly and flexible interactive interface. For
this reason it was the library of choice for this project.

To our knowledge there is currently no open-source
project that can be used to simulate arbitrary energy sys-
tems based on the Rankine and Brayton cycle, like the
Brakine program can. For this reason no attempt has
been made to design a graphical user interface for such an
application as an open-source community project. There
are however commercial applications that perform a very
similar function to what this project aims to achieve. The
company that has been at the forefront of designing ther-
mal engineering software for the power and cogeneration
industries since 1987 is Thermoflow Inc (Thermoflow,
2009). Thermoflow’s first product, GT PRO, has grown
to become the world’s most popular program for design-
ing gas turbine-based plants. However it is another one
of their products, Thermoflex, that is of particular inter-
est to this project. Thermoflex is a modular program
with a graphical interface that allows for the assembly
of a model from icons representing over one hundred
different components. The program covers both design
and off-design simulation, and models all types of power
plants, including combined cycles, conventional steam
cycles, and repowering. It can also model general ther-
mal power systems and networks.

Initially Brakine was written as an alternative to the
products that Thermoflow provides. The ultimate goal
was to provide similar flexibility in design that Ther-
moflex currently offers. The interactive interface that
Thermoflow provides in many ways is a benchmark for
this project (see Fig 1).

THERMOFLEX Version 13.0 C:\THow]3\MYFILESAS amples\(52-30a) HRSGAssembly_horiz thx
File Edit Display Bun Screen Tools Seach Output PEACE flacioCeses Help Muliple Runs

Figure 1: Screenshot of Thermoflex Software

4. ARCHITECTURE OVERVIEW

To understand how the graphical user interface that we
created interacts with the Fortran simulation program, it
is best to look at the flow of data between these two pro-
grams (see Fig 2).

The graphical user interface generates an input file for
the Fortran simulation based on the components that have
been dragged into the document, the connectivity be-
tween the components and the simulation data that the
user has assigned to the components. Once the input file
has been generated the user runs the Fortran simulation
program using the generated input file as the input file
for the simulation. The Fortran simulation program pro-
duces an output file containing the results of the simu-
lation. This output file is parsed via the graphical user-
interface and the results of the simulation are displayed
by labelling the edges between the different components
on the screen.

Input File P
ead— generate

Flow of Data Interactive
Graphical User

Fortran
Simulation

Program Interface

generale— Oiput File

Figure 2: Flow of Data

In this way the difficult and tedious task of creating
the input file is taken away from the user. Furthermore,
by labelling the edges between components with the cor-
rect simulation results the user can better understand the
outcome of the simulation.

The Brakine simulation software expects the input file
to follow a very strict order and structure. The break-
down of the structure can be found in (Roy-Aikins,
1988). A snippet of data for a text input file for a jet
engine simulation is given in Table 1. This kind of input
file is now automatically generated by our graphical user

updates. manipulates

Model
Application

Figure 4: Model View Controller

interface. Most of the information that is required by the
input file is extracted from the components on the screen,
by considering how a user connects components together,
and by capturing simulation data via input dialogues.

To display the results on screen and to label the con-
nections between components with the relevant results
the output file of the simulation program is parsed. What
is of particular interest to the user is the mass flow ratio,
the total pressure and the total temperature between two
components. Regular expressions (Friedl, 2006) are used
to extract this information from the output file. A snippet
of an output file that is generated by the original Fortran
program is presented in Table 2. The visual interpretation
of these results generated by our program is presented in
Fig 3.

5. JGRAPH ARCHITECTURE

JGraph complies with all Swing standards, both visually
and in its design architecture (Benson, 2001). As such, it
is built around the Model-View-Controller (MVC) design
pattern (see Fig 4).

The Model-View-Controller pattern is used when the
user interface needs to be separated from the functional
core of the program (Buschmann et al., 2001). By sepa-
rating the user interface from the core functionality, sev-
eral different views of the model can be displayed. For
example, in JGraph the logical graph that is specified in
the model can be displayed in various different ways at
different levels of detail simultaneously.

The Model-View-Controller architecture divides a
problem into three areas: processing, output and input.
This means that the model contains the core functional-
ity and data, the view displays information to the user
and the controller handles user input. The important con-
cept in the MVC pattern is that the model is totally inde-
pendent of specific output representations or input infor-
mation(Buschmann et al., 2001). The view obtains the
data that it wishes to display from the model and multi-
ple views of the model can exist at any point in time. The
controller receives input events, usually mouse or key-
board, that are then translated into service requests for
the model and view. In this way the view and controller
work together to make up the user interface.

Table 1: Code Snippet of a Sample Input File to Simulate
a Jet Engine

PROGRAM TITLE////

DP SI KE FP

-1

NN

.6 42.5 .7 42.5 .8 42.5 .85 28.5 .9
14.5 .95 .5 .97 -5. 1.

.6 .13 .7 .115 .8 .1 .8 .05 .8 .05 .9
.05 1. .05 1.

INTAKE S1,2 D1-5,78,278-279,344
COMPRE S2,3 D6-17 R51 V1,2,6 A86-106
PREMAS S3,10,3 D18-23,268 Al107-127
PREMAS S10,11,12 D80-85,269 A128-148
BURNER S3,4 D24-27 R69

MIXEES S4,11,5 D317

TURBIN S5,7 D43-57,341,343 Vv2,2,44
W3,2,43

DUCTER S7,8 D58-62,149

NOZCON S8,9,1 D63,79

CODEND

T64-GE-415 DATA////

!GAS TURBINE CYCLE

' INTAKE

! COMPRE
6 .85
71

8 12.5
9 .82
10 -1
11 1
13 -1
8 12.5
14 .9
15 -1
16 1
17 -1

@ Brakine Vision [BEE]
File Edt View Propertiss Help

I H2eD4BAQAIA L MERT 1 KO
4| 0Ipl= DI s |8HEE L) L] L8] o] of=|_]

e e

Figure 3: Labelling of Edges with Simulation Results

(b)

Figure 5: (a) Simple Diagram (b) Graph Topology of the
Simple Diagram

The JGraph model provides the data for the graph. It
consists of connection information and cells which may
be vertices, edges or ports. The connection information
that is stored in the model is defined using ports because
they make up an edge’s source or target (Alder, 2001).

The graph structure provides methods to retrieve the
source and target port of an edge and to return the edges
that are connected to a port. Refer to Fig 5 for an example
of a graph topology for a basic diagram.

Following the JGraph architecture every mechanical
engineering component as well as all connections be-
tween components can be called cells, because a cell is
the superclass of a vertex, edge and port. Cells have at-
tributes that define visual information such as the size,

Cell
i & m
I _— Reprasents a Type of Represents a Type of
. L Mechanical Enginearing Connection between
E = Component. Components.
(Intake. Gas, Premas eic.) {Fuel, Gas, Steam etc.)
(a)
Vertex Port Edge
coots
&
4 Werkex A — Edge A —— 2 Yeckex I
. children souzce childeen Figure 6: Relationship Between Cells and Vertices,
l raeget J, Edges and Ports.
T4
Fort a Fort b
pRERRE patent
adjes edyea

position, shape and rotation of the cell. The attributes of
a cell are stored in an attribute map. The maps provide
an easy and convenient way to customise the display and
behaviour of any cell, and hence any vertex edge and port
(because a cell is the superclass). For the purpose of this
project a cell, if it is a vertex, also stores an icon repre-
senting a particular mechanical engineering component.

To store data that is not needed for rendering, a
cell may also hold a reference to userObject. A
userObject is of type Object and in this way pro-
vides a way to associate any object with a cell. The link
between a cell and simulation data for that cell is estab-
lished via the userObject.

In summary, a cell may either be a vertex, a port or
an edge and a cell contains an attribute map that defines
how it is to be rendered. For the purpose of this project,
a vertex represents a mechanical engineering component
and an edge represents a type of connection between two
mechanical engineering components (see Fig 6).

Table 2: Code Snippet of a Sample Output File for
a Jet Engine Simulation

. **%xx+ TURBINE 1 PARAMETERS x#%x*x*x%
CNSF = .10000E+01 ETASF = .96437E+00

TFSF = .10000E+01

DHSF = .13827E-03

TF = 48.856 ETA = .85000 CN = 1.000
AUXWK = .35000E+07 DELHN = .11500E-05
ARATIO = .1300E+01

DELHT = .62000E-01

*xxxx CONVERGENT NOZZLE 1 PARAMETERS

* Kk Kk kK

Area = .5310 Exit Velocity = 67.66
Gross Thrust = 1016.54
Nozzle Coeff. = .97021E+00

Scale Factor on above Mass Flows,
Areas, Thrusts & Powers = 1.0000
Station F.A.R. Mass Flow Pstatic
Ptotal Tstatic Ttotal Vel Area

1 .00000 15.194 1.00000 1.00000
288.00 288.00 .0 *xxxxx

2 .00000 15.194 *xx%xxx .99000 *xx%*xx
288 .00 *%x%xx** *hkkkk*

3 .00000 14.434 *xx%xxx 12.37500
*kxkxxx O050.47 **kkrkxx Kk kkkk

4 .02019 14.726 *xxxx% 11.50875
*xkkxk 1350.00 ***xxk*x *k*xk*

5 .01918 15.485 **xx%xx 11.50875
*xkkxk 1318.40 ***xk*x *kkxk*

6 .00000 .000 *xxxx%x .00000 #***xxx
00 Hkkkkk krkrkrxkk

7 .01918 15.485 *xxxxx 1.01846 #s***x*
821 .04 xx*kxkk *kkkk%

8 .01918 15.485 #%xx%xx 1.00863 *xx%*xx
821.04 *xkkxk H*kkkkx

9 .01918 15.485 1.00000 1.00863
819.03 821.04 67.7 .5310

10 .00000 .760 xxkxxx 12.12750 *xx**xx
650.47 *kkkxx Hkkkh*

11 .00000 .760 xx%xx%x 12.00623 *xx**xx
650.47 Hkxkkx khkkkkk

12 .00000 .000 ##%*xx .00000 *xxwwx*

00 Hkkkk ok kkkk kK

6. SOME KEY FUNCTIONALITIES

Long-term persistence is the technical term given to the
concept of saving the state of a program and reloading it
at a later stage. Traditionally, Java serialization was used
to achieve long-term persistence. Serialization works by
writing the entire state of an object into a byte stream.
This means that to save a program, all the important ob-
jects that make up the state of the program are written to
a byte stream. The byte stream can later be deserialized
in such a way that the state the program was in when it
was saved is recreated (Winchester and Milne, 2009).

There are several problems with this approach. The
mechanism used to deserialize an object stream relies
on the internal shape of the classes that make up the
objects to remain unchanged between encoding and de-
coding (Winchester and Milne, 2009). This means that
any changes to the classes, such as adding or renaming
some fields or methods between the time that the pro-
gram was saved and retrieved, will cause deserialization
to fail. Clearly serialization is not a viable solution for
this project because a tool such as a graphical user in-
terface is likely to undergo many refinements and exten-
sions in the future.

To circumvent this problem an XMLEncoder was
used. An XMLEncoder takes a very different approach
to long-term persistence. Instead of storing a bit-wise
representation of the field values that make up an ob-
ject’s state, the XMLEncoder stores the steps necessary
to create the object through its public API (Winchester
and Milne, 2009). The advantage is that many changes
can be made to the implementation of a class while pre-
serving backward compatibility through the API. For a
thorough discussion on XMLEncoding refer to (Milne,
2009).

Drag and drop refers to functionality that allows a user
to click on a mechanical engineering icon and drag and
drop it anywhere into the document. While dragging a
preview of the icon appears at the location of the cursor.
This is commonly also known as drag and ghost since
the preview icon is usually somewhat transparent. The
drag and ghost functionality was implemented to make
the graphical user interface more user-friendly.

To store simulation data the concepts described in the
JGoodies(Lentzsch, 2009) project, such as data binding
and data validation were used. The fundamental con-
cept behind JGoodies Binding is that it synchronizes ob-
ject properties with Swing components. It also helps to
represent the state and behavior of a presentation inde-
pendently of the GUI components used in the interface.
JGoodies Validation on the other hand helps to validate
user input in Swing applications and to report validation
errors and warnings.

In this project each mechanical engineering compo-
nent is represented by an object that exposes all simu-
lation properties associated with that component through
getter and setter methods. The data for a component is
captured by a dialog box. However, before the data is
accepted it is passed to a special validator object. Each

Feedback Validation Result

Dialog Model
Capture Dat: tore Dat;
apture Data Va\idalor ore Lata-

1
1
1
1
1
s

Figure 7: How Simulation Data is Stored.

mechanical engineering component has its own valida-
tor. The validator uses regular expressions to validate
that the user input conforms to the expected input. If the
data does not conform the user receives immediate feed-
back through the dialog box, because the input fields that
contain errors turn red (see Figure 7).

7. RESULTS AND LIMITATIONS

Arbitrary energy systems can be visually drawn with a
high degree of precision and flexibility. Flexibility and
generalisation is achieved in part by using the most ele-
mentary mechanical engineering components as building
blocks for the system. More complex components are
created by combining the elementary building blocks.

The graphical interface is modelled on popular graph
drawing programs such as Microsoft Visio. Conven-
tions used in established software packages are followed
to make the software more user friendly. With this in
mind, the engineering components are represented by
icons in the toolbar, which can be dragged and dropped
anywhere in the document window. Components are
selected by clicking on them, or by dragging a mar-
quee selection window. Multiple components can be
selected/deselected by following the Microsoft Windows
XP convention of holding down the Ctr! button and click-
ing. Zoom functionality allows the user to zoom out to
get a birds-eye view of the design or to zoom in on partic-
ular regions. Connections between components can start
and terminate at any location on the component. This
is significant because there is meaning associated with
where a line terminates on a component. All engineering
line styles are supported to represent the connections be-
tween components. The line styles differ in color, dash
pattern and thickness. Air connections and fuel connec-
tions are represented by parallel lines. The line styles
differ in thickness to ensure that they will be distinguish-
able from one another even if printed in black and white.
A grid can also be displayed to make the alignment of
components easier.

Several design patterns have been used to maintain a
clean separation between the view (the graphics the user
interacts with) and the model (the relationship between
components and their properties). The design patterns
further facilitate easier maintenance and extension of the
system.

The entire state of the program, including the graphics,

component properties and simulation results can be saved
to file and recalled at a later stage.

The properties of components that previously had to be
typed into a file are now captured by dialog boxes. The
dialog boxes contain input hints that explain what the in-
put fields mean and in what format the input is expected.
The dialog boxes are directly associated with the graph-
ical mechanical engineering components, which allows
the user to visualize the impact the properties of a partic-
ular component should have on a system, by considering
the connections between components.

The custom router written for this project, to draw par-
allel lines between the source and target components or-
thogonally, has been accepted by the JGraph community
as a valuable contribution and is available on the JGraph
Community Forum.

8. CONCLUSION AND FUTURE WORK

We managed to transform the Brakine software into a
useful and versatile simulation program by creating a
new intuitive graphical user interface that links seam-
lessly with the original Fortran program. However, there
is still a lot of work that can be done to further improve
the usability of the software. The bulk of the future work
should focus on the following:

o JUnit Tests
A comprehensive test suite has to be written for the
entire project. This will not only find bugs in the
current implementation but will ensure that any fu-
ture modifications do not break the existing code
base.

e Support for Printing
Printing support still has to be coded. This will
involve implementing the Java Printable and
Pageable interfaces. Care has to be taken to en-
sure that diagrams scale and fit onto a page.

e Automatic Generation of Brick Data Indices

Currently the user is still required to keep track of
a lot input information for the simulation that could
be generated automatically. This is particularly the
case with brick data indices. More information on
what brick indices are and what role they play in the
Brakine simulation program can be found in (Roy-
Aikins, 1988).

REFERENCES

Alder, G. (2001) Design and implementation of the jgraph
swing component. http://ontwerpenl.khlim.be/
projects/netsim/jgraph-paper.pdf

Alder, G. and Benson, D. (2001) Jgraph. http://www.
jgraph.com

Benson, D. (2001) Jgraph and jgraphlayout pro user manual.
http://www.jgraph.com/pub/jgraphmanual .
pdf

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. (2001). Pattern-Orientated Software Architecture -
A System of Patterns, volume One. WILEY.

Jeffrey Friedl (2006). Mastering Regular Expressions, volume
Three. O’Reilly.

Cengel, Y. A., and Boles M. (2006). Thermodynamics: An
Engineering Approach, volume Four. McGraw-Hill.

Casella, F. and Leva, A. (2003). Modelica open library for
power plant simulation: design and experimental validation.
In Proceedings of the 3rd International Modelica Confer-
ence, pages 41-50, Linkoping, Sweden.

McKim, C. S., and Matthews, M. T. (1996). Modular mod-
eling system model builder In Proceedings of Intersociety
Energy Conversion Engineering Conference, pages 2039-
2044, Washington D.C., USA.

Casella, F. and Leva, A. (2003). Supporting Protocol-Based
Care in Medicine via Multiple Coordinated Views. In Pro-
ceedings of the Second International Conference on Coor-
dinated Multiple Views in Exploratory Visualization, pages
118-129, London, England.

Hobart, J. (2001) Articles on usability and design.
http://www.classicsys.com/css06/cfm/
articles.cfm

Kim, D. W., Youn, C., Cho, B.-H., and Son, G. (2005). De-
velopment of a power plant simulation tool with gui based
on general purpose design software. International Journal
of Control, Automation, and Systems, 3(3):493-501.

Hanisch, D., Sohler, F., and Zimmer, R. (2004). ToPNet an ap-
plication for interactive analysis of expression data and bio-
logical networks. Bioinformatics, 20(9):1-2.

Lentzsch, K. (2009) Jgoodies. http://www.Jjgoodies.
com/

Tom Sawyer Software. (2009) Tom sawyer visualization.

Microsoft. Microsoft visio. www.microsoft.com/

office/visio/

Milne, P. Using xmlencoder. http://java.sun.com/
products/jfc/tsc/articles/persistenced/

O’Madahain, J., Fisher, D., and Nelson, T. (2003) Java
universal network/graph framework. http://jung.
sourceforge.net/index.html

Pendleton, B., Heer, J., Li, J., and Beckmann, C. (2007) The
prefuse visualisation toolkit. http://prefuse.org/

Reyes, J. C. (2004). A graph editing framework for the streamit
language. Master’s thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute Of
Technology.

Roy-Aikins, J. E. A. (1988). The VATEMP Manual - A Supple-
ment to the Turbomatch Users’ Guide. Cranfield Institute of
Technology,Cranfield.

Roy-Aikins, J. E. A. (1995). Brakine: A programming software
for the performance simulation of brayton and rankine cycle
plants. In Proceedings of the Institution of Mechanical En-
gineers, Part A, Journal of Power and Energy, 209(2):281 —
286.

Thermoflow (2009). Thermoflow.

thermoflow.com/

http://www.

Valyi, R. , and Ortega, E. (2004) Emergy Simulator, an open
source simulation platform dedicated to system ecology and
emergy studies In Proceedings of IV Biennial Interna-
tional Workshop Advances in Energy Studies, pages 349—
360, Campinas, Brazil. .

Winchester, J. and Milne, P. (2009) Xml serialization of java
objects. http://jdj.sys-con.com/read/37550.
htm

yWorks. (2009) yfiles. http: //www.yworks.com/

AUTHOR BIOGRAPHIES

ZYGMUNT L. SZPAK is a Master’s student at
the School of Computer Science at the University
of KwaZulu-Natal, South Africa. His general re-
search interests include Artificial Intelligence, Image
Processing, Computer Vision and Pattern Recogni-
tion. Currently, the central theme of his research is
on real-time tracking and modelling of the behavior
of ships, in a maritime environment. His email is
zygmunt . szpak@gmail.com.

JULES R. TAPAMO is Associate Professor at the
School of Computer Science at the University of
KwaZulu-Natal, South Africa. He completed his PhD
degree from the University of Rouen (France) in 1992.
His research interests are in Image Processing, Computer
Vision, Machine Learning, Algorithms and Biometrics.
He is a member of the IEEE Computer Society, IEEE
Signal Processing Society and the ACM. His email is
tapamoj@ukzn.ac. za.

JOE ROY-AIKINS is Associate Professor at the
School of Mechanical Engineering at the Univer-
sity of KwaZulu-Natal, South Africa. His email is
aikinsj@ukzn.ac.za

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

