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Abstract An approach is presented for estimating a set of
interdependent homography matrices linked together by la-
tent variables. The approach allows enforcement of all un-
derlying consistency constraints while accounting for the ar-
bitrariness of the scale of each individual matrix. The input
data is assumed to be in the form of a set of homography ma-
trices individually estimated from image data with no regard
to the consistency constraints, appended by a set of error
covariances, each characterising the uncertainty of a corre-
sponding homography matrix. A statistically motivated cost
function is introduced for upgrading, via optimisation, the
input data to a set of homography matrices satisfying the
constraints. The function is invariant to a change of any of
the individual scales of the input matrices. The proposed ap-
proach is applied to the particular problem of estimating a
set of homography matrices induced by multiple planes in
the 3D scene between two views. An optimisation algorithm
for this problem is developed that operates on natural under-
lying latent variables, with the use of those variables ensur-
ing that all consistency constraints are satisfied. Experimen-
tal results indicate that the algorithm outperforms previous
schemes proposed for the same task and is fully compara-
ble in accuracy with the ‘gold standard’ bundle adjustment
technique, rendering the whole approach both of practical
and theoretical interest. With a view to practical application,
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it is shown that the proposed algorithm can be incorporated
into the familiar random sampling and consensus technique,
so that the resulting modified scheme is capable of robust fit-
ting of fully consistent homographies to data with outliers.
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1 Introduction

Estimation of a single homography matrix from image mea-
surements is an important step in 3D reconstruction, mo-
saicing, camera calibration, metric rectification, and other
tasks [24]. For some applications, like non-rigid motion de-
tection [25, 46] or enhanced image warping [20], a whole
array of homography matrices are required. The matrices
have to be intrinsically interconnected to satisfy consistency
constraints representing the rigidity of the motion and the
scene. Moreover, the matrices have to be collectively multi-
homogeneous—rescaling any individual matrix should not
affect the projective information contained in the whole ma-
trix set. A key problem in estimating multiple homogra-
phy matrices is to enforce the underlying consistency con-
straints while accounting for the arbitrariness of the indi-
vidual scales of the matrices. The need to cope with scale
indeterminacy has not been particularly emphasised previ-
ously, but that it is an important aspect of the problem will
be apparent from our study.

As a rule, the consistency constraints are available only
in implicit form. The conventional approach to cope with
such constraints is to evolve a derivative family of ex-
plicit constraints. The new constraints are typically more
relaxed than the original ones. Adhering to this methodol-
ogy, Shashua and Avidan [40] have found that homography
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matrices induced by four or more planes in the 3D scene be-
tween two views span a four-dimensional linear subspace.
Chen and Suter [4] have derived a set of strengthened con-
straints for the case of three or more homographies in two
views. Zelnik-Manor and Irani [46] have shown that another
rank-four constraint applies to a set of so-called relative ho-
mographies generated by two planes between four or more
views. These latter authors have also derived constraints for
larger sets of homographies and views.

Once isolated, the explicit constraints can be put to use
in a procedure whereby first individual homography matri-
ces are estimated from image data, and next these matri-
ces are upgraded to matrices satisfying the constraints. Fol-
lowing this pattern, Shashua and Avidan as well as Zelnik-
Manor and Irani used low-rank approximation under the
Frobenius norm to enforce the rank-four constraint. Chen
and Suter enforced their set of constraints also via low-rank
approximation, but then employed the Mahalanobis norm
with covariances of input homographies. All these estima-
tion procedures involve input matrices coming with specific
scale factors. The underlying error measures are such that a
change of scale factors may a priori result in a different set
of estimates. Furthermore, the output matrices satisfy only
the derivative constraints, so their perfect consistency is not
guaranteed. Another limitation of the existing methods is
that each requires a certain minimum number of input ho-
mography matrices and none can work with only two such
matrices.

This paper presents an alternative approach to estimating
interdependent homography matrices which ensures that all
implicit constraints are enforced and that the final estimates
are unaffected by any specific choice of individual scale fac-
tors. A statistically motivated cost function is proposed for
upgrading, via optimisation, the input set of homography
matrices to a set satisfying all possible constraints. The func-
tion is scale change insensitive. To achieve high estimation
accuracy, it incorporates the covariances of the input matri-
ces, and this yields, upon optimisation, a statistically sound
approximated maximum likelihood fit to the data. The util-
ity of the function is demonstrated in a specific application,
namely the problem of estimating a set of homography ma-
trices induced by multiple planes in a 3D scene between
two views. A variant of the Levenberg–Marquardt algorithm
for that problem is developed that is specifically tailored to
a parametrisation of the homography matrices via natural
underlying latent variables. The use of the parametrisation
ensures that all consistency constraints are satisfied. A no-
table contribution of this work is the development of a pro-
cedure for determining initial values of the latent variables,
so that the optimisation process seeded with these values
converges to a useful local minimum. Importantly, the pro-
cedure works already for two input homography matrices,
hence enabling the overall estimation scheme to work for

two input homography matrices or more. The initialisation
procedure is in fact of wider interest, as it is suitable for ini-
tialising other methods that operate on the same latent vari-
ables, including the canonical bundle adjustment technique
for maximum likelihood estimation. The results which are
contained in the experimental section of the paper validate
the approach and show that the proposed estimation method
outperforms existing schemes, achieving high levels of ac-
curacy on par with the ‘gold-standard’ bundle adjustment
technique. While the newly introduced method, like all other
aforementioned methods, is not truly robust to outliers, it
can—as it turns out—be made robust via incorporation into
a bigger robust fitting scheme. A particular scheme of this
kind forms a final contribution of the paper, and one of prac-
tical utility. It is a modification of the well-known random
sampling and consensus (RANSAC) technique specialised
to facilitate robust fitting of fully consistent homographies
to data with outliers. The proposed estimation method en-
ters the modified RANSAC as a computationally efficient
tool for generating fully consistent homographies.

Earlier results informing this work appeared in [15]. The
present findings are part of a broader, ongoing study, one of
whose recent contributions is [42].

2 Multi-projective parameter estimation and latent
variables

We first formulate the problem of estimating a set of inter-
dependent homographies as a problem in multi-projective
parameter estimation [14]. A general multi-projective pa-
rameter estimation problem involves a collection X1, . . . ,XI

of k × l matrices envisaged as data points, and a collection
Θ1, . . . ,ΘI of k × l matrices treated as parameters. Each Xi

is assumed to be known only up to an individual multiplica-
tive non-zero factor. The Θi’s are subject to constraints and
are meant to represent improved versions of the Xi’s. With
the k × Il matrix X = [X1, . . . ,XI] denoting the composite
datum and the k × Il matrix Θ = [Θ1, . . . ,ΘI] denoting the
composite parameter, the problem under consideration is to
fit Θ to X so that the constraints on Θ are met. Exemplify-
ing this general problem is the following specific problem of
interest:

Problem 1 Fit a set of 3 × 3 matrices, representing planar
homographies engendered by various planes in a 3D scene
under common projections on two images, to a given set of
3 × 3 matrices.

To see how the multi-projective framework applies here,
consider a pair of fixed cameras with camera matrices
K1R1[I3,−t1] and K2R2[I3,−t2]. Here, the length-3 transla-
tion vector tn and the 3 × 3 rotation matrix Rn represent the
Euclidean transformation between the n-th (n = 1, 2) camera
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and the world coordinate system, Kn is a 3 × 3 upper trian-
gular calibration matrix encoding the internal parameters of
the n-th camera, and, for each m = 1, 2, . . . , Im denotes the
m × m identity matrix. Suppose, moreover, that a set of I
planes in a 3D scene have been selected. Given i = 1, . . . , I,
let the i-th plane from the collection have a unit outward nor-
mal ni and be situated at a distance di from the origin of the
world coordinate system. Then, for each i = 1, . . . , I, the i-
th plane gives rise to a planar homography between the first
and second views described by the 3 × 3 matrix

Hi = wiA + bv>i , (1)

where

A = K2R2R−1
1 K−1

1 , wi = n>i t1 − di,

b = K2R2(t1 − t2), vi = K−>1 R1ni.
(2)

We note that in the case of calibrated cameras when one may
assume that K1 = K2 = I3, t1 = 0, R1 = I3, R2 = R, system
(2) reduces to

A = R, wi = −di,

b = t, vi = ni,
(3)

with t = −Rt2, and equality (1) becomes the familiar direct
nRt representation

Hi = −diR + tn>i

(cf. [2, 33]). We stress that all of our subsequent analysis
concerns the general case of possibly uncalibrated cameras,
with A, b, wi’s and vi’s to be interpreted according to (2)
rather than (3).

Let H = [H1, . . . ,HI] be the composite of all the ho-
mography matrices in question. Then, with a = vec(A),
where vec denotes column-wise vectorisation [32], η =

[a>,b>, v>1 , . . . , v
>
I , w1, . . . , wI]>, and

Π(η) = [Π1(η), . . . ,ΠI(η)], Πi(η) = wiA + bv>i , (4)

H can be represented as

H = Π(η). (5)

The components of η constitute latent variables that link all
the matrices Πi(η) together and provide a natural parametri-
sation of the set of all H’s. Since η has a total of 4I + 12
entries, the set of all matrices of the form Π(η) has dimen-
sion no greater than 4I +12. A more refined argument shows
that the set of all Π(η)’s has in fact dimension equal to
4I + 7 [12, 13]. Since 4I + 7 < 9I whenever I ≥ 2, it fol-
lows that H resides in a proper subset of all 3 × 3I matrices
for I ≥ 2. Thus, the requirement that H take the form as per
(5) whenever I ≥ 2 can be seen as an implicit constraint
on H, with the consequence that the Hi’s are all interdepen-
dent. Suppose that an estimate X = [X1, . . . ,XI] of H has

Fig. 1: Resolving scale and sign indeterminacy in the deriva-
tion of homography covariances by imposing the normali-
sation constraint ‖x‖ = 1. The antipodal points x and −x
encode one and the same homography. The true perturba-
tions ∆x and −∆x of the homography are approximated to
the first order by their respective images ∆x′ and −∆x′ via
the orthogonal projections onto the tangent space to the unit
sphere at x and −x. Information about the spread of varying
∆x is carried by the restriction of the covariance matrixΛx to
the tangent space at x. The restriction of Λx to the orthogo-
nal complement of the tangent space at x, which is the space
spanned by x, vanishes and carries no information about the
spread of the ∆x’s. Likewise for Λ−x. Since the spread of the
∆x’s is the same as the spread of the −∆x’s, it follows that
Λx = Λ−x.

been generated in some way. For example, for each i, Xi

might be an estimate of Hi individually obtained from im-
age data. The estimation problem at hand is to upgrade X to
Θ = [Θ1, . . . ,ΘI] so that Θ = Π(η) holds for some η and Θ
is close to X in a meaningful sense. The essence here is to
find a criterion and effective means for selecting an appro-
priate η.

3 Approximate maximum likelihood cost function and
scale invariance

The general problem of fitting Θ to X with constraints im-
posed on Θ is best considered as an optimisation problem.
Since the input matrices are known only up to individual
scales, the output matrices should also be determined only
to within individual scales. This can be achieved through
the use of multi-homogeneous cost functions. A function J
is multi-homogeneous if

J(×λΘ) = J(Θ)

for each length-I vector λ = [λ1, . . . , λI]> with non-zero
entries, where ×λΘ = [λ1Θ1, . . . , λIΘI]. It is clear that if
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a function is multi-homogeneous, then it is minimised not
only at a single Θ but also at all composite multiples ×λΘ.

To describe a multi-homogeneous cost function relevant
to our problem, for each i = 1, . . . , I, let

θi = vec(Θi), xi = vec(Xi),

with each vector having length kl. Referring to the Xi’s via
their vectorisations, suppose that associated with each xi is
a kl× kl covariance matrix Λxi

. Our cost function will incor-
porate the Λxi

’s, assuming that they all take a specific form
that we elaborate on next.

If the parameters of a model are represented by a vector
to within a scale factor, then the covariance matrix of any
particular estimate of the parameter vector is not uniquely
determined. To see why, recall first that covariances are av-
erages of squared perturbations of specific instantiations of
a model. If the model is over-parametrised, involving some
redundant parameters like an indeterminate scale, then the
parameter vector is not identified by the model and pertur-
bations in the model space do not translate unequivocally
into perturbations in the parameter space. A way of dealing
with this problem is to restrict the parameter space—that
is, to identify the model—by imposing equality constraints.
Such an imposition is known as gauge fixing, with the term
“gauge” referring to any particular set of constraints. The
covariances evolved with the aid of gauge-fixing rules are
gauge dependent—they can look very different for different
gauges [27,43]. In what follows, we eliminate the scale inde-
terminacy by imposing the normalisation constraint ‖x‖ = 1
(see Fig. 1). Under this condition, the covariance matrix
of an estimate x is such that Λx = Λ

±‖x‖−1x and, more-
over, Λx = P⊥xΛ0

xP⊥x , where P⊥x is the kl × kl symmetric
projection matrix given by P⊥x = Ikl − ‖x‖−2xx> and Λ0

x
is a kl × kl symmetric matrix that we shall refer to as a
pre-covariance matrix. An argument leading to the above
assertion, together with explicit expressions for Λ0

x in two
specific cases, can be found in Appendices A and B; see
also [3, 28]. As P⊥x x = 0 and x>P⊥x = 0>, the matrix Λx
satisfies Λxx = 0 and x>Λx = 0>, and, in particular, is
singular. In line with this, the companion information ma-
trix associated with x, given by the Moore–Penrose pseudo-
inverseΛ+

x ofΛx, also satisfiesΛ+
x x = 0 and x>Λ+

x = 0>,
and is singular.

We take for our approximate maximum likelihood
(AML) cost function the squared Mahalanobis distance be-
tween any aggregate {εi‖θi‖

−1θi}
I
i=1, εi = ±1, of normalised,

arbitrarily signed variants of the θi’s and any aggregate
{ε′i ‖xi‖

−1xi)}Ii=1, ε′i = ±1, of similar variants of the xi’s, with

the matrices Λ+
xi

serving as weights

JAML(Θ) =

I∑
i=1

(εi‖θi‖
−1θi − ε

′
i ‖xi‖

−1xi)>

× Λ+
ε′i ‖xi‖

−1xi
(εi‖θi‖

−1θi − ε
′
i ‖xi‖

−1xi).

On account of Λ+
xi

xi = 0, x>i Λ
+
xi

= 0>, and Λxi
= Λ

±‖xi‖
−1xi
,

the expression for the function does not depend on any par-
ticular choice of the signs εi and ε′i and reduces to

JAML(Θ) =

I∑
i=1

‖θi‖
−2θ>i Λ

+
xi
θi.

Note that, for each i = 1, . . . , I, multiplying θi by a non-
zero scalar λi results in θ>i Λ

+
xi
θi being multiplied by λ2

i and
‖θi‖

−2 being multiplied by λ−2
i , so that ‖θi‖

−2θ>i Λ
+
xi
θi remains

intact. As a result, the AML function is multi-homogeneous.
The label “approximate” in the name of JAML refers

to the fact that JAML is an approximation—to within an
additive constant—of another maximum likelihood-based
cost function, namely the exact maximum likelihood (EML)
cost function that underpins the bundle adjustment method
for estimating the θi’s directly from image data. The EML
cost function, encompassing the so-called reprojection er-
ror [24, Sect. 4.2.3], has for its composite argument the
principal parameters θi, i = 1, . . . , I, alongside some ad-
ditional nuisance parameters. The approximation leading
from the EML cost function to the AML cost function in-
volves, among other things, the elimination of the nuisance
parameters (cf. [8, 10, 11, 26, 31, 35]).

With the significance of the AML cost function eluci-
dated, when one now takes into consideration the constraints
on Θ, the corresponding constrained minimiser of JAML can
be viewed as a statistically well-founded estimate of Θ.

4 Rank-four constraint enforcement

This section will depart from the primary topic of the pa-
per, which is the upgrading of multiple homographies using
the AML cost function, to shed light on an earlier multi-
homography updating technique commonly known as rank-
four constraint enforcement. The material here is fairly tech-
nical and can be skipped without detriment to the under-
standing of the rest of the paper. The purpose of the de-
parture is to reconcile an apparent contradiction: while we
stress the importance of explicitly modelling the estimation
process within a multi-projective framework, rank-four con-
straint enforcement—which is known to work—appears at
first glance to be outside of this framework. The princi-
ple underpinning rank-four constraint enforcement is that
a collection of five or more interrelated homography ma-
trices resides in an at most four-dimensional subspace. In
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its standard form, the technique enforces the rank-four con-
straint linearly via a singular value decomposition (SVD)
based projection on a linear space of lower dimension. The
standard form can naturally be extended to a whole fam-
ily of weighted variants. It is not immediately clear how all
of these, including the standard form, can fit into the cat-
egory of multi-projective techniques. Settling this question
seems necessary, given the multi-projective standpoint ad-
vocated in this paper. Below, we reveal that all versions of
the method, despite their linear allure, are in fact fully com-
patible with the multi-projectiveness paradigm.

Given a composite of homography matrices H =

[H1, . . . ,HI] satisfying (5), let H be the 9 × I matrix given
by

H = [h1, . . .hI], hi = vec(Hi). (6)

Since, for each i = 1, . . . , I,

hi = wi vec(A) + vec(bv>i ) = wia + (I3 ⊗ b)vi, (7)

where ⊗ denotes Kronecker product [32], it follows that

H = ST, (8)

where S is the 9 × 4 matrix given by

S = [I3 ⊗ b, a]

and T is the 4 × I matrix given by

T =

[
v1 . . . vI

w1 . . . wI

]
.

An immediate consequence of (8) is that H has rank at
most four. The requirement that H should have rank no
greater than four places a genuine constraint on H, and
hence also on H, whenever I ≥ 5. This constraint is ex-
actly the rank-four constraint of Shashua and Avidan men-
tioned in the Introduction. In accordance with what has al-
ready been pointed out, when I ≥ 5, the rank-four con-
straint can be enforced linearly, by employing SVD, in an
infinite numbers of ways. Specifically, with every length-I
vector p = [p1, . . . , pI]> with non-zero entries, each having
the meaning of an importance weight, there is associated a
specific enforcement procedure. It needs to be immediately
added that the procedures associated with different p are not
necessarily different. If p and p′ are proportional up to indi-
vidual signs of the entries of p and p′, that is, if pi = λεi p′i
with εi = ±1 for some λ , 0 and all i = 1, . . . , I, then the
corresponding procedures are equivalent in the sense that the
sets of respective output homographies (but not necessarily
the sets of output homography matrices) are equal. If p and
p′ are not proportional up to individual signs of the entries
of p and p′, then the respective procedures are, as a rule,
different.

Before describing the enforcement procedures in detail,
we shall need to identify the inverse mapping r to the map-
ping H 7→ H defined in (6). It is readily verified that H can
be expressed in terms of H as

H = r(H) = (vec(H))(3)

Here, given an n × m matrix S and a positive integer r that
divides m, S(r) denotes the r-wise vector transposition of S,
that is, the n × (m/r) matrix obtained by performing a block
transposition on S, with blocks comprising length-r column
vectors [19].1 In MATLAB parlance,

H = r(H) = reshape(H, 3, 3I).

With these preparations in place, given X = [X1, . . . ,XI]
with I ≥ 5, let Fp(X) be the 9 × I matrix given by

Fp(X) = [p1‖x1‖
−1x1, . . . , pI‖xI‖

−1xI].

Let Fp(X) = UDV> be the SVD of X, with D being a
9× I diagonal matrix with main diagonal entries d11, . . . dqq,
q = min(9, I), and, correspondingly, let Fp(X)4 = UD4V>
be the 4-truncated SVD of Fp(X), with D4 resulting from
D by replacing the entries d55, . . . , dqq by zero. Define the
rank-four correction Θ̂rank4,p of X by

Θ̂rank4,p = [Θ̂rank4,p,1, . . . , Θ̂rank4,p,I] = r(UD4V>).

The procedure whereby X gets upgraded to Θ̂rank4,p con-
stitutes the SVD-based method for enforcing the rank-four
constraint associated with p. The default version of the
method corresponds to p having all entries equal to 1.

We claim that, for any p, the mapping that sends X to
Θ̂rank4,p has the following property: if X is replaced by ×λX
with λ being a length-I vector with non-zero entries, then
Θ̂rank4,p is replaced by ×σΘ̂rank4,p for some length-I vector
σ that depends only on λ. This property implies that the
homographies described by the Θ̂rank4,p,i’s are well defined
as functions of the homographies described by the Xi’s,
providing thereby a desired reconciliation with the multi-
projectiveness paradigm.

It is clear that Fp(X) is multi-positively invariant: if λ =

[λ1, . . . , λI]> has all entries positive, then Fp(×λX) = Fp(X).
Consequently, Θ̂rank4,p is also multi-positively invariant. We
shall next show that Θ̂rank4,p is multi-sign equivariant: if ε =

[ε1, . . . , εi]> is such that εi = ±1 for each i = 1, . . . , I, then

Θ̂rank4,p(×εX) = ×εΘ̂rank4,p(X). (9)

1 The following examples illustrate the logic behind the definition
of vector transposition:

a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62


(2)

=

[ a11 a31 a51
a21 a41 a61
a12 a32 a52
a22 a42 a62

]
,


a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62


(3)

=


a11 a41
a21 a51
a31 a61
a12 a42
a22 a52
a32 a62

.
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To this end, we introduce E = diag(ε1, . . . , εI). Note that
E> = E and E2 = II , so in particular E is orthogonal: EE> =

II . Note also that

Fp(×εX) = [p1ε1‖x1‖
−1x1, . . . , pIεI‖xI‖

−1xI] = Fp(X)E.

Clearly,

Fp(X)E = UDV>E = UDV>E> = UD(EV)>.

As V and E are both orthogonal, EV is orthogonal too, and
so UD(EV)> is the SVD of Fp(X)E. Consequently,

(Fp(X)E)4 = UD4(EV)>.

Taking into account that UD4(EV)> = UD4V>E> =

UD4V>E, we conclude that

r(UD4V>E) = ×εr(UD4V>),

which establishes (9). Being multi-positively invariant
and multi-sign equivariant, the mapping X 7→ Θ̂rank4,p
has the desired property—indeed, a moment’s reflection
shows that Θ̂rank4,p(×λX) = ×σΘ̂rank4,p(X), where σ =

[sgn(λ1), . . . , sgn(λI)]>. The claim is established.
We remark that the argument used above can be read-

ily employed to verify that if p and p′ are such that p′i =

λεi pi, where λ , 0 and εi = ±1 for each i = 1, . . . , I,
then the procedures X 7→ Θ̂rank4,p and X 7→ Θ̂rank4,p′ are
equivalent. Indeed, it is immediate that Fp′ (X) = Fp(×ξX),
where ξ = [sgn(λ)ε1, . . . , sgn(λ)εI]>. Hence Θ̂rank4,p′ (X) =

×ξΘ̂rank4,p(X), and this in turn implies that the sets of ho-
mographies defined by Θ̂rank4,p(X) and Θ̂rank4,p′ (X) coincide.
One consequence of the assertion just established is that to
parametrise the enforcement procedures X 7→ Θ̂rank4,p(X) it
suffices to consider weighting vectors p with all positive en-
tries summing up to 1.

We finally point out that it is a separate question as to
what p should be chosen to get a statistically most accurate
enforcement procedure. A particular value of p, depending
on X, can be inferred from considerations contained in [46]
(reflecting the fact that interrelated homography matrices Xi

can always be brought to the form Xi = λi(A + bv>i ); see
below), but it is conceivable that alternative choices leading
to better results exist.

5 Cost function optimisation

After a detour into rank-four constraint enforcement, we
now turn our attention to the question of optimisation of
functions for which the AML cost function is a prototype—
all this, of course, with a view to optimising the AML cost
function itself.

Let J be a cost function for fitting Θ to X of the form

J(Θ) =

I∑
i=1

‖θi‖
−2θ>i Aiθi,

where, for each i = 1, . . . , I, Ai is a kl × kl non-negative
definite matrix. Clearly, the AML cost function conforms to
this profile. Suppose that the constraints on Θ take the form

Θ = Π(η), Π(η) = [Π1(η), . . . ,ΠI(η)],

where η is a length-d vector (we have d = 4I + 12 in the
case of the constraints given in (4)). Upon introducing the
function

J′(η) = J(Π(η)),

the constrained optimisation problem in question reduces to
that of optimising J′, which is an unconstrained optimisa-
tion problem.

One way of optimising J′ is to use the Levenberg–
Marquardt (LM) method. The starting point is to re-express
J′ as

J′(η) =

I∑
i=1

‖f′i (η)‖
2,

where, for each i = 1, . . . , I,

f′i (η) = fi(πi(η)),

fi(θi) = ‖θi‖
−1Biθi, πi(η) = vec(Πi(η)),

with Bi a kl × kl matrix such that B>i Bi = Ai; in particular,
Bi may be taken equal to the unique non-negative definite
square root of Ai.2 Let f′(η) = [f′>1 (η), . . . , f′>I (η)]>. The LM
technique makes use of the Ikl× d Jacobian matrix ∂ηf′ rep-
resented as ∂ηf′ = [∂ηf′1

>, . . . , ∂ηf′I
>]>. For each i = 1, . . . , I,

∂ηf′i (η) = ∂θi fi(πi(η))∂ηπi(η)

with ∂θi fi(θi) = ‖θi‖
−1BiP⊥θi

and P⊥θi
= Ikl−‖θi‖

−2θiθ
>
i . The al-

gorithm iteratively improves on an initial approximation η0

to the minimiser of J′ by constructing new approximations
with the aid of the update rule

ηn+1 = ηn − [H(ηn) + λnId)]−1[∂ηf′(ηn)]>f′(ηn),

where H = (∂ηf′)>∂ηf′ and λn is a non-negative scalar that
dynamically changes from step to step. Details concerning
the choice of λn can be found in [38].

2 The non-negative definite square root C1/2 of a symmetric non-
negative definite matrix C is defined as follows: If C = UDU> is the
eigenvalue decomposition of C with U an orthogonal matrix and D a
diagonal matrix comprising the (non-negative) eigenvalues of C, then
C1/2 = UD1/2U>, where D1/2 is the diagonal matrix containing the
square roots of the respective entries of D.



Multiple Homography Estimation 7

6 Multiple homography estimation

We now proceed to consider the LM-based estimation of
multiple homography matrices. We first describe the specific
details of the relevant iterative scheme and then develop a
suitable initialisation procedure. This procedure will be ap-
plicable not only to the LM scheme, but to any other iterative
method operating on the latent variable vector η (in particu-
lar, to a bundle adjustment technique—see Section 7.2), and
as such is of interest in its own right.

6.1 LM scheme

In the setup described by (4) and (5), we have, in accordance
with (7),

πi(η) = vec(wiA + bv>i ) = wia + vi ⊗ b

for each i = 1, . . . , I. Taking into account that vi ⊗ b = (I3 ⊗

b)vi = (vi ⊗ I3)b, one readily verifies that

∂aπi = wiI9, ∂bπi = vi ⊗ I3,

∂viπi = I3 ⊗ b, ∂v jπ j = 0 (i , j),

∂wiπi = a, ∂w jπ j = 0 (i , j).

Representing, for each i = 1, . . . , I, ∂ηf′i as

∂ηf′i = [∂af′i , ∂bf′i , ∂v1 f′i , . . . , ∂vI f
′
i , ∂w1 f′i , . . . , ∂wI f

′
i ],

one finds furthermore that

∂af′i = wi‖πi‖
−1BiP⊥πi

,

∂bf′i = ‖πi‖
−1BiP⊥πi

(vi ⊗ I3),

∂vi f
′
i = ‖πi‖

−1BiP⊥πi
(I3 ⊗ b), ∂v j f

′
i = 0 ( j , i),

∂wi f
′
i = ‖πi‖

−1BiP⊥πi
a, ∂w j f

′
i = 0 ( j , i).

With ∂ηf′ thus determined, all that is now needed is a means
for determining a suitable initial value of η.

6.2 Initialisation procedure

To devise an initialisation procedure, we first consider the
following problem:

Problem 2 Given X = [X1, . . . ,XI] satisfying

Xi = λiHi (10)

for each i = 1, . . . , I, where λi is a non-zero scalar and Hi =

wiA + bv>i , solve for A, b, vi and wi in terms of X.

The essence here is to recover the structure of a set of ma-
trices which are known a priori to satisfy (1), but which are
identified only up to (unknown) scale factors.

Observe first that the solution of the problem cannot be
unique. Indeed, if Hi = wiA + bv>i for each i, then also Hi =

w′iA
′ + b′v′>i for each i, where A′ = βA + bc>, b′ = αb,

v′i = α−1vi − α
−1β−1c, and w′i = β−1wi, with α and β non-

zero numbers and c a length-3 vector c. Therefore, we shall
contend ourselves with a single specific solution.

Note that Xi = λi(wiA + bv>i ) implies Xi = λ′i(A + bv′>i )
with λ′i = wiλi and v′i = w−1

i vi. Thus, without loss of gen-
erality, we may assume that wi = 1 for each i. Now, system
(10) becomes

Xi = λi(A + bv>i ). (11)

Select arbitrarily i and j with i , j. Taking into account that
v>i (vi × v j) = v>j (vi × v j) = 0, we see that

λ−1
i Xi(vi × v j) = A(vi × v j) = λ−1

j X j(vi × v j)

and further

X−1
i X j(vi × v j) = λ−1

i λ j(vi × v j). (12)

Consequently, λ−1
i λ j is an eigenvalue of X−1

i X j. Note that if
c is any length-3 vector, then (11) holds with A replaced by
A + bc> and with bv>i replaced by b(vi − c)>. Accordingly,
(12) holds with (vi − c)× (v j − c) substituted for vi × v j. It is
easily seen that as c varies, the vectors

(vi − c) × (v j − c) = (c − v j) × (vi − v j)

fill out a two-dimensional linear space, namely the space of
all length-3 vectors orthogonal to vi−v j. Thus λ−1

i λ j is in fact
a double eigenvalue of X−1

i X j, which, generically, is unique.
Denoting this eigenvalue by µi j and observing that

λ−1
i λ jXi − X j = λ j(λ−1

i Xi − λ
− j
j X j) = λ jb(vi − v j)>,

we next see that b can be identified, up to a scalar factor, as
the unique left singular vector of µi jXi − X j corresponding
to a non-zero singular value.

Having made these observations, we now fix i0 arbitrar-
ily. For each i , i0, let µii0 be the double eigenvalue of
X−1

i Xi0 . Then, for each i , i0,

µii0 Xi = λ−1
i λi0 Xi = λi0 (A + bv>i ).

Relabelling λi0 A as A and λi0 b as b, the last relation simpli-
fies to

µii0 Xi = A + bv>i (13)

and the i0-th defining equation becomes

Xi0 = A + bv>i0 . (14)
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Algorithm 1: Initialisation-Procedure

Input: Xi, i = 1, . . . , I
Output: ā, b̄, v̄i and w̄i, i = 1, . . . , I

1 For each i = 1, . . . , I, let w̄i = 1.
2 Select i0 arbitrarily from the range between 1 and I.
3 For each i , i0, determine two closest eigenvalues µ(1)

ii0
and µ(2)

ii0

of X−1
i Xi0 , and set µii0 = (µ(1)

ii0
+ µ(2)

ii0
)/2.

4 Take for b̄ a left singular vector of the 3 × 6(I − 1) juxtaposition
(horizontal concatenation) of the matrices µ(1)

ii0
Xi − Xi0 and

µ(2)
ii0

Xi −Xi0 , i , ii0 , corresponding to the biggest singular value.
5 For each i , i0, replace µii0 with the real part of µii0 . Also

replace b̄ with the vector comprising the real parts of the
elements of b̄.

6 Let ā = vec(Xi0 ) and v̄i0 = 0.
7 For each i , ii0 , set v̄i = v̄i0 + ‖b̄‖−2(µii0 Xi − Xi0 )>b̄.

Take for b the left singular vector of the 3×3(I−1) matrix ob-
tained by juxtapositioning (concatenating horizontally) the
matrices µii0 Xi − Xi0 , i , ii0 , corresponding to a single non-
zero singular value. Now, by subtracting (14) from (13), we
find, for each i , ii0 ,

µii0 Xi − Xi0 = b(vi − vi0 )>

whence

vi = vi0 + ‖b‖−2(µii0 Xi − Xi0 )>b.

To fully solve our problem, it remains to determine vi0 and
A. The only constraint that we now have to take into account
is (14). One simple solution is

A = Xi0 , vi0 = 0.

With our problem successfully solved, we are now
in position to furnish a desired initialisation proce-
dure. Based on a noisy data set X, a seed η̄ =

[ā>, b̄>, v̄>1 , . . . , v̄
>
I , w̄1, . . . , w̄I]> for any iterative method

operating on η is obtained by modifying the specific solution
given above. The modification reflects the fact that X admits
only an approximate representation as in (10). The steps of
the initialisation procedure are detailed in Algorithm 1.

It is noteworthy that for the above procedure to work,
just two different input homographies suffice. This is in con-
trast with the initialisation proposed by Chen and Suter [4]
which requires at least three different homographies.

7 Experimental verification

The method was tested on both synthetic and real data. Syn-
thetic data were used to quantify the effect of noise on the
method. Real data were used to evaluate the performance of
the method in a real-world situation.

ᵝ

α

optical axis

up vector

Fig. 2: Synthetic data generation procedure.

7.1 Synthetic data

Synthetic data were created by generating true correspond-
ing points for some stereo configuration and adding random
Gaussian noise to these points. Many configurations were
investigated. Any specific instantiation of true image points
was developed as follows. First, we chose a realistic geo-
metric configuration for two cameras. Next, we applied a
random rotation and translation to a plane that is parallel to
the first camera’s image plane (see Fig. 2). Repeating this
last step several times, we generated several planes in the
3D scene. Finally, between 25 to 50 points in each plane
were randomly selected in the field of view of both cameras,
and these were projected onto two 640 × 480 pixel images
to provide true image points.

7.2 Synthetic simulation procedure

Each synthetic true image point was perturbed by indepen-
dent homogeneous Gaussian noise at a preset level. For
different series of experiments, different noise levels were
applied. This resulted in I groups of noise-contaminated
pairs of corresponding points {mn,i,m′n,i}

Ni
n=1, i = 1, . . . , I,

corresponding to I different planes in the 3D scene, with
I ∈ {2, 4, 5, 6, 7, 8} for different experiments; here, Ni is the
number of feature points in the i-th plane.

The estimation methods considered were:

• DLT direct linear transform,
• FNS fundamental numerical scheme,
• WALS weighted alternating least squares,
• AML approximate maximum likelihood,
• BA bundle adjustment.

DLT [24] is a linear method for estimating a single homog-
raphy and FNS [8, 39] is an iterative method for the same
purpose, the two methods optimising two different, yet re-
lated cost functions. For the small noise levels utilised in
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Fig. 3: Comparison of homography estimation methods on synthetic data. The results are based on averaging the reprojection
error over all planes in the scene. The DLT and FNS estimators do not enforce consistency constraints, while WALS, AML,
and our variant of BA do. The results show that enforcing consistency constraints can result in considerable denoising. The
typical performance of AML and BA is virtually indistinguishable. The poor performance of WALS in (b) is due to the
instability of the method. On some occasions it converges to a very poor solution with high reprojection error. This adversely
affects its Mean RMS score.

our study, FNS produces the same results as single homogra-
phy bundle adjustment, and to all intents and purposes may
be regarded as the gold standard single homography estima-
tion method. Both DLT and FNS were run on suitably nor-
malised data. For each i = 1, . . . , I, two data-dependent nor-
malisation matrices Ti and T′i were applied to {mn,i,m′n,i}

Ni
n=1

using the rule

m̃n,i = Timn,i and m̃′n,i = T′im
′
n,i

to produce individually normalised corresponding points
{m̃n,i, m̃′n,i}

Ni
n=1 à la Hartley [7, 9, 23]. These normalised

groups were used as input to DLT and FNS to produce two
sets of I homography matrices {̂̃ΘDLT,i}

I
i=1 and {̂̃ΘFNS,i}

I
i=1.

The final estimates Θ̂DLT = {Θ̂DLT,i}
I
i=1 and Θ̂FNS =

{Θ̂FNS,i}
I
i=1 were obtained by applying, for each i = 1, . . . , I,

the back-transformation Θi 7→ T′−1
i ΘiTi to ̂̃ΘDLT,i and̂̃ΘFNS,i, respectively.

WALS is Chen and Suter’s method of weighted alternat-
ing least squares with weights derived from the covariances
of input estimates. Both WALS and our proposed AML
method use as input, in one version, the estimates produced
by FNS and, in another version, the estimates produced by
DLT. For reasons of numerical stability, both WALS and
AML required data normalisation as a pre-processing step.
A common data normalisation procedure was employed to
both methods, namely we combined all the points together
to produce two global normalisation matrices T and T′.
These matrices were used to produce globally normalised
corresponding points { ◦mn,i,

◦m′n,i}
Ni
n=1, i = 1, . . . , I, defined by

◦mn,i = Tmn,i and ◦m′n,i = T′m′n,i.

The input of the FNS-initialised versions of WALS and
AML, WALS-FNS and AML-FNS, took the form of the
FNS estimates based on { ◦mn,i,

◦m′n,i}
Ni
n=1, i = 1, . . . , I. Like-

wise, the input of the DLT-initialised versions of WALS and
AML, WALS-DLT and AML-DLT, took the form of the
DLT estimates based on { ◦mn,i,

◦m′n,i}
Ni
n=1, i = 1, . . . , I. For each

initialisation, a specific prescription, described below, was
used to generate the pre-covariance matrix Λ0

xi
for the vec-

torisation xi of Xi for each i = 1, . . . , I. The matrices Xi and
pre-covariances Λ0

xi
were next used as input to the WALS

and AML methods to produce estimates which, upon apply-
ing the back-transformation Θ 7→ T′−1ΘT, were taken to be
Θ̂WALS = {Θ̂WALS,i}

I
i=1 and Θ̂AML = {Θ̂AML,i}

I
i=1, respectively

In the case of the FNS-initialised methods, the pre-
covariance matrix for the vectorisation xi of Xi, based on
{
◦mn,i,

◦m′n,i}
Ni
n=1, was taken to be

Λ0
xi

= (Mxi )
+
8 , (15)

Mxi = ‖xi‖
2

Ni∑
n=1

U(◦zn,i)(Σ(◦zn,i, xi))+
2 U(◦zn,i)>. (16)

Here, ◦zn,i = [◦un,i,
◦
vn,i,

◦u′n,i,
◦
v′n,i]

> is the result of combining
◦mn,i = [◦un,i,

◦
vn,i, 1]> and ◦m′n,i = [◦u′n,i,

◦
v′n,i, 1]> into a single

vector; U(◦zn,i) and Σ(◦zn,i, xi) are defined by

U(z) = −m ⊗ [m′]×,

B(z) = ∂zvec(U(z))Λz
[
∂zvec(U(z))

]>
,

Σ(z, x) = (I3 ⊗ x>)B(z)(I3 ⊗ x)

with z = [u, v, u′, v′]> derived from m = [u, v, 1]> and m′ =

[u′, v′, 1]>, and with x a length-9 vector; for a length-3 vector
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a, [a]× is the 3 × 3 anti-symmetric matrix given by

[a]× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 ;

and A+
r denotes the rank-r truncated pseudo-inverse of the

matrix A (see [26] or Appendix A for the definition). The
image data covariance matrices Λ◦zn,i

, incorporated in the
matrices Σ(◦zn,i, xi), were all chosen to be in their default
form diag(1, 1, 1, 1), corresponding to isotropic homoge-
neous noise in image point measurement. The details of for-
mula (15) are given in Appendix A.

The DLT-initialised methods employed the raw co-
variance matrix for the vectorisation xi of Xi, based on
{
◦mn,i,

◦m′n,i}
Ni
n=1, in the form

Λ0
xi

= (Mxi )
+
8 Dxi (Mxi )

+
8 . (17)

with Mxi given in (16) and

Dxi = ‖xi‖
−2

N∑
n=1

U(◦zn,i)Σ(◦zn,i, xi)U(◦zn,i)>.

Formula (17) relies on the material presented in Appendix B.
BA is a method for calculating maximum likelihood es-

timates and is regarded as the gold standard for performing
optimal parameter estimation. It is the same as what is called
joint bundle adjustment in [42]. The qualifier “joint” serves
to emphasise the fact that this variant of bundle adjustment,
using the latent variables, enforces full homography consis-
tency constraints. In contrast, naive separate bundle adjust-
ment minimises the gold standard geometric error, but does
not enforce consistency constraints. In this paper we do not
explicitly consider separate bundle adjustment, therefore we
label joint bundle adjustment simply as BA. However, sep-
arate bundle adjustment enters implicitly into our consider-
ations through FNS, as, in accordance with our earlier re-
mark, FNS applied to estimate each individual homography
separately yields results indistinguishable from those pro-
duced by separate bundle adjustment for the levels of noise
employed in our experiments.

The BA method was used in two variants, BA-FNS
and BA-DLT, which differed in the way the method’s iter-
ative process was initialised. In both variants, a BA estimate
Θ̂BA = {Θ̂BA,i}

I
i=1 was generated directly from all the image

data {{ ◦mn,i,
◦m′n,i}

Ni
n=1}

I
i=1 by minimising the reprojection error

I∑
i=1

Ni∑
n=1

(
d( ◦mn,i,mn,i)

2 + d( ◦m′n,i,Πi(η)mn,i)
2
)

over all choices of parameter vectors η and 2D points
{{mn,i}

Ni
n=1}

I
i=1,with the minimum attained at the composite of

η̂ and {{m̂n,i}
Ni
n=1}

I
i=1 resulting in Θ̂BA,i = Πi (̂η). Here, d(m,n)

denotes the Euclidean distance between the points m and n

dehomogenised at the last, third entry. The initial value of
each mn,i was taken to be ◦mn,i in both variants, and the ini-
tial value of η was obtained from the result of AML-FNS
for BA-FNS, and from the result of AML-DLT for BA-DLT.
Upon initialisation, η and the mn,i’s were recomputed itera-
tively by an LM scheme adapted to the task of minimising
the error given above. With ÂBA, b̂BA, v̂BA,i’s, ŵBA,i’s derived
from the terminal value of η, the estimates Θ̂BA,i were finally
obtained by applying the back-transformationΘ 7→ T′−1ΘT
to ŵBA,iÂBA + b̂BAv̂>BA,i.

7.3 Real data

To investigate the performance of the proposed method on
real data, we utilised the Model House sequence from the
Oxford dataset,3 the Lady Symon and Old Classics Wing
scenes from the AdelaideRMF dataset4 [45], and addition-
ally two traffic scenes from the Traffic Signs dataset5 [30].

We generated corresponding points for the Oxford
and Traffic Signs datasets using correlation-based match-
ing on Harris corner points. Because the matching of cor-
ner points was done without manual intervention, the re-
sulting set of corresponding points included pure outliers
(incorrect matches). Corresponding points for the Adelai-
deRMF dataset were generated in a different manner, but
also included pure outliers. The curator of the AdelaideRMF
dataset detected key points using SIFT and generated true
correspondences by manually matching only a subset of key
points. The remaining key points were randomly matched
and labelled as pure outliers.

To make the experiments on real data as realistic as
possible, we did not manually group data points into dif-
ferent planar regions. Instead, we took advantage of recent
progress in robust hypothesis generation for multi-structure
data [6] and sampled a thousand candidate homographies
based on four-element sets of matched correspondences. For
each pair of corresponding points, we computed the sym-
metric transfer error [24, Sect. 4.2.2] for all 1,000 homo-
graphies and ranked the homographies according to this er-
ror. This means that each correspondence had an associ-
ated preference list that ranked the homographies. Making
use of the ordered residual kernel method [5] which defines
a distance between rankings, together with an agglomerat-
ing clustering scheme, we grouped the pairs of correspond-
ing points into several clusters. The clustering scheme that
we applied does not guarantee that all final clusters belong
to different planes in the scene. In fact, frequently corre-
spondences are fragmented into two different clusters even

3 http://www.robots.ox.ac.uk/˜vgg/data/data-mview.

html
4 http://cs.adelaide.edu.au/˜hwong/doku.php?id=data
5 http://www.cvl.isy.liu.se/research/datasets/

traffic-signs-dataset/download/



Multiple Homography Estimation 11

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

Noise Level

P
er

ce
n
ta

g
e

Percentage of trials which improved upon FNS estimate

 

 

BA−FNS

AML−FNS

WALS

(a) Measuring the percentage of trials for
which various joint homography estimation
methods converged to a solution with lower
reprojection error than FNS. Results are
based on 1500 trials with 4 homographies per
trial.

4 5 6 7 8

0

5

10

15

20

25

30

35

Number of Homographies

P
er

ce
n

ta
g

e

Percentage reduction in reprojection error over FNS estimate

 

 

BA−FNS

AML−FNS

WALS

(b) Improvement over FNS for estimation
methods enforcing consistency constraints,
expressed in terms of percentage reduction in
reprojection error. Results are based on 1500
trials, with 50 data points per trial and the
noise level of σ = 2 pixels.

4 5 6 7 8

0

2

4

6

8

10

12

14

16

Number of Homographies

S
ec

o
n

d
s

Median running time of homography estimation methods

 

 

BA−FNS

AML−FNS

WALS

(c) Comparison of median running time of
various homography estimation methods. Re-
sults are based on 1500 trials, with 50 data
points per trial and the noise level of σ = 2
pixels. Note that the running time for AML-
FNS was less than a tenth of a second, and so
the AML-FNS bar graphs are barely visible.

Fig. 4: Evaluating homography estimation methods on synthetic data by: (a) comparing how often the consistency constraint
enforcing methods yield lower reprojection errors than separate FNS homography estimation; (b) quantifying the expected
percentage reduction in reprojection error, and (c) measuring their running times.

though visually they should belong to the same plane. This
means that effectively the same planar region may have more
than one homography associated with it. Such is the case
with the Model House sequence where clustering led to the
appearance of six homographies (corresponding to six clus-
ters) even though there are only four actual planes in the
scene. The fragmentation effect is not unique to our clus-
tering scheme and was also observed by Fouhey et al. [18],
who used a different algorithm (J-linkage) to group planar
data points together. The empirical fact that fragmentation
occurs so frequently serves as an affirmation that it is im-
portant to exploit consistency constraints as a means for
enhancing coherency between homographies derived from
logically linked clusters.

7.4 Real data experiment procedure

After automatically grouping the data points into several
clusters, we estimated homographies using DLT for each
group. To compare and contrast the stability and accuracy of
the consistency enforcing estimation methods, we used the
same initialisation procedure (Algorithm 1) on the DLT es-
timates of each group to seed AML-DLT, WALS-DLT, and
BA-DLT.

7.5 Quantitative comparison of methods

On synthetic data, for Θ̂ = {Θ̂i}
I
i=1 generated by the DLT,

FNS, WALS, AML, and BA methods, the common distance

used to quantify data–model discrepancies was the mean
root-mean-square (RMS) reprojection error from truth

1
I

I∑
i=1

√√√
1

4NiK

K∑
k=1

min
m(k)

n,i

Ni∑
n=1

(
d(m(k)

n,i ,m
(k)
n,i )

2 + d(m′(k)
n,i , Θ̂im(k)

n,i )
2
)
,

where K is the number of experiments, and, for each
k = 1, . . . ,K, {{m(k)

n,i ,m
′(k)
n,i }

Ni
n=1}

I
i=1 are noiseless data and

{{m(k)
n,i }

Ni
n=1}

I
i=1 are arbitrary 2D points over which the min-

imum is taken in the k-th experiment. A comparison of
the methods on synthetic data is shown in Figs. 3 and 4.
The results indicate that the proposed algorithm outperforms
DLT, FNS, WALS-DLT, and WALS-FNS, and is practically
indistinguishable in performance from the BA method for
small noise levels. For larger noise levels all algorithms that
enforce consistency constraints become susceptible to con-
verging to a poor local minimum, resulting in homography
estimates that are worse than separately estimated homo-
graphies. Figure 4a shows comparatively how often the al-
gorithms that enforce consistency homographies managed
to improve upon the (separately) FNS-estimated homogra-
phies. While the likelihood of converging to a superior so-
lution decreased as the noise level increased, our method
still fared better than WALS. With σ = 2 pixels our algo-
rithm converged to a superior solution in more than 90% of
trials. The deterioration of the algorithm at higher noise lev-
els can be attributed to Algorithm 1 which is used to find
initial values for the latent variables. For high noise levels
Algorithm 1 yields latent variables that are associated with
high cost function values, which means that the optimisa-
tion methods are initialised far from the optimal solution and
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(a) view 0. (b) view 1.
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(c) Reprojection error for view 0 and 1.

(d) view 2. (e) view 3.
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(f) Reprojection error for view 2 and 3.

(g) view 4. (h) view 5.

AML−DLT BA−DLT WALS−DLT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimation Methods 

R
ep

ro
je

ct
io

n 
E

rr
or

 

 
H 1
H 2
H 3
H 4
H 5
H 6

(i) Reprojection error for view 4 and 5.

Fig. 5: Comparison of consistency enforcing estimation methods on the Model House sequence. The first two columns show
the feature points (inliers) associated with various homographies on the model house views. The third column compares
the reprojection error of AML-DLT, WALS-DLT, and BA-DLT for each homography. Note that in some figures the errors
associated with particular homographies are so close to zero that the bar graphs are barely visible.

have a greater chance of stopping at a poor local minimum.
In Fig. 4b, we display the percentage reduction in reprojec-
tion error that enforcing consistency constraints can produce
when compared with separate homography estimation. The
results show that one can expect approximately 23% reduc-
tion for four homographies, and up to approximately 30%
reduction for eight homographies. Even when there were
only two planes in the scene, we still observed an approx-
imately 10% reduction in reprojection error. These findings
evidence that upgrading a set of inconsistent homographies
to a fully consistent set can yield considerable practical ben-
efits and constitute the raison d’être of our algorithm. In
Fig. 4c, we present the median running time of BA, WALS,
and our method. Our algorithm is orders of magnitude faster
than all other options, requiring on average only four itera-

tions to converge. It is thanks to our algorithm’s remarkable
and unique computational efficiency that it can be incorpo-
rated into a random sampling and consensus framework to
filter out sets of putative homographies that are mutually in-
compatible (see Section 7.6).

On real data, we evaluate the performance of AML-
DLT, WALS-DLT, and BA-DLT against each other by com-
paring the quality of each estimated homography separately.
The comparisons are made by plotting bar graphs of the
RMS reprojection error from data

√√√
1

4Ni
min
mn,i

Ni∑
n=1

(
d(mn,i,mn,i)

2 + d(m′n,i, Θ̂imn,i)
2
)
,
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(j) view 6. (k) view 7.
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(l) Reprojection error for view 6 and 7.

(m) view 8. (n) view 9.
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(o) Reprojection error for view 8 and 9.

Continued Fig. 5: Comparison of consistency enforcing estimation methods on the Model House sequence. The first two
columns show the feature points (inliers) associated with various homographies on the model house views. The third column
compares the reprojection error of AML-DLT, WALS-DLT, and BA-DLT for each homography. Note that in some figures
the errors associated with particular homographies are so close to zero that the bar graphs are barely visible.

where {{mn,i,m′n,i}
Ni
n=1}

I
i=1 are the original corresponding

points and {{mn,i}
Ni
n=1}

I
i=1 are arbitrary 2D points over which

the minimum is taken. By plotting the error for each homog-
raphy separately, it is possible to gain a deeper insight into
the performance of each method. A comparison on real data
is given in Figs. 5, 6, and 7. The results show that WALS is
inferior to both AML and BA, frequently displaying much
higher errors in at least one of the homographies. On the
other hand, our proposed scheme produces results which are
often a very good approximation to BA.

We defer a deeper discussion of the results to Section 8.

7.6 Application: robust consistent homography estimation

Our experiments have shown that the scope of consistency
enforcing algorithms is not limited to synthetic data—when
the algorithms are applied to homographies estimated on
real-world scenes, full consistency can still be achieved.
However, neither AML, nor WALS, nor BA are truly robust
to outliers and it may be the case that if consistency con-
straints are imposed on a collection of homographies where
one of the homographies is an outlier, then all of the meth-
ods may fail to produce accurate estimates. That is because
each method employs a non-robust error measure and relies
on an initialisation which in its current form is not robust.

One possible way to circumvent any robustness issues is to
incorporate the consistency constraints directly into the well
known random sampling and consensus (RANSAC) estima-
tion loop [24, Sect. 4.7.1], so that the homographies returned
by a RANSAC procedure are by construction fully consis-
tent. This can be achieved by a simple modification of the
canonical RANSAC procedure, and the pseudo-code for the
modification is given in Algorithm 2.

Algorithm 2 makes use of several functions, namely f ,
g, h, and ρ. The function f can be any standard method for
estimating a single homography, such as DLT or FNS. The
function g serves to determine a set of inliers consistent with
a given homography estimate. It utilises a cost function ρ

that computes an error between a point correspondence and
a homography, and declares a particular correspondence to
be a member of the set of inliers for the given homography
estimate if the value of ρ for that correspondence falls below
a user-specified threshold t. Typically, the cost function ρ is
chosen to be the symmetric transfer error. The function h
represents a procedure that takes as input a set of homogra-
phy matrices together with covariances and produces a new
set of fully consistent homographies. In our implementation,
we take for h the AML algorithm proposed in this paper.

When faced with multiple planar structures in a set of
correspondences, researchers and practitioners using stan-
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(a) Lady Symon building view 0. (b) Lady Symon building view 1.
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(c) Reprojection error for view 0 and 1 of Lady
Symon building.

(d) Old Classics Wing building view 0. (e) Old Classics Wing building view 1.
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(f) Reprojection error for view 0 and 1 of Old
Classics Wing building.

Fig. 6: Comparison of consistency enforcing estimation methods on the AdelaideRMF sequence. The first two columns show
the feature points (inliers) associated with various homographies on the Lady Symon and Old Classics Wing buildings. The
third column compares the reprojection error of AML-DLT, WALS-DLT, and BA-DLT for each homography.

dard RANSAC frequently resort to the following strategy:
(i) search for the homography with the largest number of in-
liers and (ii) from all considered homographies, choose the
homography with the largest number of inliers, remove its
inliers from the set of correspondences and repeat the whole
process to find the next plane [29,44]. The essence of Algo-
rithm 2 is the same, except that we modify step (ii) so that
from all considered homographies, we choose the homogra-
phy that has the largest number of inliers and at the same
time is fully consistent with any planar structures found so
far. We then remove its inliers from the set of correspon-
dences and repeat the whole process to find the next plane.

Since computational efficiency is crucial for algorithms
like RANSAC that are intended to be practical, our modifi-
cation of RANSAC is an excellent example of where one
would prefer to impose consistency constraints using our
AML algorithm, which is relatively fast, instead of BA,
which is slower. As a proof-of-concept of our idea, we show
in Fig. 8 the inliers associated with fully consistent homo-
graphies on various real data taken from the Oxford dataset,
which were produced by running our modified RANSAC al-
gorithm. The results demonstrate that finding numerous vi-
sually pleasing inliers related to fully consistent homogra-
phies is fundamentally possible.

8 Discussion

We have identified several important factors that may help
explain the success of our method. Firstly, the error covari-
ance matrices associated with the individual homography
estimates are absolutely crucial. Without covariance infor-
mation we are unable to produce meaningful results. Sec-
ondly, our scale-invariant cost function captures the projec-
tive nature of the parameters that are being estimated, and
ensures that the optimisation method always takes a step in
a meaningful direction. The scale invariance is not properly
accounted for in the method of Chen and Suter, and this par-
tially explains why their method tends to produce worse re-
sults. Furthermore, the Levenberg–Marquardt optimisation
method is better suited for solving non-linear optimisation
problems than for example the bilinear approach followed
by Chen and Suter.

Our modification of RANSAC serves to emphasise the
practical utility of our research outcome. There are, of
course, many other modifications to the original RANSAC
algorithm, each claiming to be the best. Usually, the modifi-
cations are based on improvements to the sampling scheme.
Although they may be faster than the original RANSAC,
none can produce fully consistent homographies. We leave it
to future work to decide which modern variant of RANSAC
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(a) Traffic scene A view 0. (b) Traffic scene A view 1.
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(c) Reprojection error for view 0 and 1 of Traffic
scene A.

(d) Traffic scene B view 0. (e) Traffic scene B view 1.
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(f) Reprojection error for view 0 and 1 of Traffic
scene B.

Fig. 7: Comparison of consistency enforcing estimation methods on the Traffic Signs sequence. The first two columns
show the feature points (inliers) associated with various homographies on two traffic scenes. The third column compares
the reprojection error of AML-DLT, WALS-DLT, and BA-DLT for each homography. Note that in some cases, the errors
associated with particular homographies are so close to zero, that the bar graphs are barely visible.

(a) Feature points (inliers) associated with four
fully consistent homographies on Merton College
III.

(b) Feature points (inliers) associated with three fully
consistent homographies on Raglan Castle.

(c) Feature points (in-
liers) associated with two
fully consistent homo-
graphies on Valbonne
Church.

Fig. 8: Inliers associated with fully consistent homographies found using Algorithm 2. The results on real data indicate that
finding fully consistent homographies using our AML cost function is tractable.

to couple with our full consistency constraints to achieve
maximum computational efficiency.

We also wish to point out that our algorithm need not be
incorporated into a sampling procedure such as RANSAC

to be of practical use. One could, for example, utilise the
recently proposed generalised projection based M-estimator
[36] to estimate a set of inconsistent homographies, and then
upgrade them to a fully consistent set using our method.
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Algorithm 2: Robust-Consistent-Homography-Estimation
Input: • S = {mn,m′n}Nn=1 — a set of N corresponding pairs of points

• m — the minimum number of point correspondences needed to compute a homography
• f : s 7→ X — the function estimating a homography matrix X from a sample s of m point correspondences
• I — the user-specified number of desired homographies
• ρ(X, {m,m′}) — the cost function measuring the discrepancy between a point correspondence {m,m′} and a homography X
• t — the threshold for determining inliers
• g : (X, ρ, S , t) 7→ κ — the function identifying a set of inliers κ within a set of data points S relative to a homography X, based on

a cost function ρ and a threshold t for determining inliers
• h : ([X1, . . . ,X j], [Λx1

, . . . ,Λx j
]) → [Θ1, . . . ,Θ j] — the function h that takes a collection of homographies X1, . . . ,X j together

with their covariances Λx1
, . . . ,Λx j

and produces a new set of fully consistent homographies Θ1, . . . ,Θ j
• L — the maximum number of iterations (it is best to select L adaptively—see [24, Sect. 4.7.1] for details)

Output: [Θ1, . . . ,ΘI] — fully consistent homographies

1 [Θ1, . . . ,ΘI]← ∅ and [Λθ1
, . . . ,ΛθI

]← ∅
2 for i← 1 to I do
3 k ← 0, C∗ ← ∞, Θ∗i ← ∅, and κ∗i ← ∅
4 repeat
5 select a subset sk of S of m point correspondences at random
6 estimate parameters Xk = f (sk) and compute covariance Λxk

7 compute cost Ck =
∑
{m,m′}∈S min

(
t, ρ(Xk, {m,m′})

)
8 if C∗ > Ck then

// Enforce consistency constraints on a candidate homography

9 [Θ̂1, . . . , Θ̂i−1, Θ̂
k
i ]← h([Θ1, . . . ,Θi−1,Xk], [Λθ1

, . . . ,Λθi−1
,Λxk ])

10 compute cost Ck∗ =
∑
{m,m′}∈S min

(
t, ρ(Θ̂k

i , {m,m
′})

)
11 compute inliers κk∗

i ← g(Θ̂k
i , ρ, S , t)

12 if |κ∗i | < |κ
k∗
i | then

13 C∗ ← Ck∗, Θ∗i ← Θ̂
k
i , Λθ∗i ← Λxk , and κ∗i ← κk∗

i

14 end if
15 end if
16 k ← k + 1
17 until k = L

// Enforce consistency constraints on selected homographies

18 [Θ1, . . . ,Θi−1,Θi]← h([Θ1, . . . ,Θi−1,Θ
∗
i ], [Λθ1

, . . . ,Λθi−1
,Λθ∗i

])

19 Λθi
← Λθ∗i

and S ← S \ κ∗i
20 end for

Since enforcing consistency constraints leads to a reduction
in reprojection error and hence an improvement in the qual-
ity of the homographies, it always makes sense to do so.

9 Conclusion

Our principal contribution within this paper has been to for-
mulate the problem of estimating multiple interdependent
homographies in a manner that enforces full consistency be-
tween all constituent homographies. A key feature of this
formulation is the exploitation of latent variables that link to-
gether different homographies. The resulting solution strat-
egy has a natural translation into a full-blown BA procedure
and into the computationally more efficient AML estimation
procedure. Since both BA and AML are non-linear optimi-
sation techniques, they both require a suitable initialisation
to produce meaningful results.

In this connection, our second important contribution
has been the derivation of a novel compact initialisation pro-

cedure which can be applied when there are two or more
planes in the scene. In contrast, the initialisation procedure
of Chen and Suter is more involved and requires at least
there planes before it can be utilised.

The third notable contribution of our work has been to
show that our scale-invariant AML cost function frequently
produces estimates that are an accurate approximation of
BA. Compared to the WALS algorithm of Chen and Suter,
our method has the advantage that it consistently converges
to a better minimum. This is evidenced by experimental re-
sults on both real and synthetic data. Furthermore, we have
furnished a derivation of suitable homography covariance
matrices for both DLT and FNS estimates, to be found in
Appendices A and B, and our final formulas are tailored to
facilitate easy implementation.

Drawing on the experimentally confirmed validity of our
approach, we have proposed a modification to the celebrated
RANSAC algorithm to robustly estimate fully consistent ho-
mographies. Since in RANSAC computational efficiency is
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vital, the modified algorithm serves as a noteworthy exam-
ple of where our AML scheme is preferable to BA.

Finally, we conclude by pointing out that once recov-
ered, the latent variables encoding the fully consistent ho-
mographies can be immediately utilised to provide a projec-
tive reconstruction of the scene.

The source code for our experiments can be found at
http://sites.google.com/site/szpakz/.
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Appendices

A Appendix: covariance of the AML estimate

Here, we derive a formula for the covariance matrix of the
AML estimate of a vectorised homography matrix based on
a set of image correspondences. It will be convenient to es-
tablish first an expression for the covariance matrix of the
AML estimate of a parameter vector of a certain general
model. This model will comprise, as particular cases, mod-
els whose parameters describe a relationship among image
feature locations. Once the general formula for a covariance
matrix is established, we shall then evolve a specialised for-
mula for the case of the homography model.

A.1 General model

The data–parameter relationship for the general model will
be assumed in the form

f(z,β) = 0,

where z is a length-k vector describing an ideal (noiseless)
data point, β is a length-l vector of parameters, and f(z,β) is
a length-m vector of constraints of the form

f(z,β) = U(z)>β,

where U(z) is an l×m matrix—the so-called data carrier ma-
trix—with entries formed by smooth functions in z. Details
on how this formulation applies to the homography model
are given in Appendix A.2. It will be further assumed that
the observed data points z1, . . . , zN come equipped with co-
variance matrices Λz1

, . . . ,ΛzN
quantifying measurement er-

rors in the data. Under the assumption that the errors are
independently sampled from Gaussian distributions with co-
variances of the form Λzn

, n = 1, . . . ,N, the relevant AML

cost function to fit the model parameters to the data is given
by

JAML(β) =

N∑
n=1

f(z,β)>Σ(zn,β)−1f(z,β),

where

Σ(zn,β) = ∂zf(zn,β)Λzn
[∂zf(zn,β)]>

(cf. [8, 10, 11, 26, 31, 35]). Importantly, when m, the com-
mon length of the f(zn,β)’s, surpasses the codimension r
of the submanifolds of the form {z ∈ Rk | f(z,β) =

0} with β representing parameters under which the data
might have been generated, the inverses Σ(zn,β)−1 in the
above expression for JAML must be replaced by, say, the
r-truncated pseudo-inverses Σ(zn,β)+

r [17, 26]. Recall that
the r-truncated pseudo-inverse of an m × m matrix A, A+

r ,
is defined as follows: If A = UDV> is SVD of A, with
D = diag(d1, . . . , dm), and if Ar = UDrV> with Dr =

diag(d1, . . . , dr, 0, . . . , 0) is the r-truncated SVD of A, then
A+

r = VD+
r U> with D+

r = diag(d+
1 , . . . , d

+
r , 0, . . . , 0), where

d+
i = d−1

i when di , 0 and d+
i = 0 otherwise. The AML

estimate of β, β̂AML, is the minimiser of JAML. As a conse-
quence of JAML being homogeneous of degree zero, β̂AML is
determined only up to scale. The estimate β̂AML satisfies the
necessary optimality condition

[∂βJAML(β)]β=β̂AML
= 0>, (18)

which is the basis for all what follows. Using the formula

U(z)>β = (Im ⊗ β
>) vec(U(z)), (19)

one readily verifies that

[∂βJAML(β)]> = 2Xββ,

where Xβ = Mβ − Nβ is an l × l symmetric matrix with

Mβ =

N∑
n=1

UnΣ
−1
n UT

n , (20a)

Nβ =

N∑
n=1

(η>n ⊗ Il)Bn(ηn ⊗ Il), (20b)

Un = U(zn), (20c)

Bn = ∂zn vec(Un)Λzn
[∂zn vec(Un)]>, (20d)

Σn = (Im ⊗ β
>)Bn(Im ⊗ β), (20e)

ηn = Σ−1
n U>n β. (20f)

Accordingly, Eq. (18) can be rewritten as

Xβ̂β̂ = 0, (21)

where β̂AML is abbreviated to β̂ for clarity. Hereafter, β̂ =

β̂(z1, . . . , zN) will be assumed normalised and smooth as a
function of z1, . . . , zN .
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To derive an expression for the covariance matrix of β̂,
we use (21) in conjunction with the covariance propagation
formula

Λ
β̂

=

N∑
n=1

∂zn β̂Λzn
(∂zn β̂)> (22)

(cf. [16, 22]). Differentiating ‖β̂‖2 = 1 with respect to zn

gives (∂zn β̂)>β̂ = 0. This together with (22) implies that

β̂>Λ
β̂

= Λ
β̂
β̂ = 0

so that Λ
β̂

is singular, and further yields

P⊥
β̂
Λ
β̂

= Λ
β̂
P⊥
β̂

= Λ
β̂
, (23)

where, of course, P⊥
β̂

= Il − ‖β̂‖
−2β̂β̂>. Letting zn =

[zn1 . . . znk]> and β̂ = [̂β1, . . . , β̂l]>, and differentiating (21)
with respect to zni, we obtain

[
[∂zni Xβ]β=β̂ +

l∑
j=1

[∂β j Xβ]β=β̂∂zni β̂ j

]
β̂ + Xβ̂∂zni β̂ = 0.

Introducing the Gauss-Newton approximation, i.e., neglect-
ing the terms that contain β̂>u(zn), we reduce this equality
to the equality

UnΣ
−1
n (∂zni Un)T β̂ + Mβ̂∂zni β̂ = 0.

Now, in view of (19) and the fact that

(∂zni Un)T β̂ = vec((∂zni Un)T β̂) = vec(β̂T∂zni Un)

= (Im ⊗ β̂
>)∂zni vec(Un),

we have

Mβ̂∂zni β̂ = −UnΣ
−1
n (∂zni Un)T β̂

= −UnΣ
−1
n (Im ⊗ β̂

>)∂zni vec(Un)

and further

Mβ̂∂zn β̂ = −UnΣ
−1
n (Im ⊗ β̂

>)∂zn vec(Un).

Hence

Mβ̂∂zn β̂Λzn
(∂zn β̂)>Mβ̂

= UnΣ
−1
n (Im ⊗ β̂

>)

× ∂zn vec(Un)Λzn
[∂zn vec(Un)]>(Im ⊗ β̂)Σ−1

n U>n .

But, by (20d) and (20e),

(Im ⊗ β̂
>)∂zn vec(Un)Λzn

[∂zn vec(Un)]>(Im ⊗ β̂)

= (Im ⊗ β̂
>)Bn(Im ⊗ β̂) = Σn

so

Mβ̂∂zn β̂Λzn
(∂zn β̂)>Mβ̂ = UnΣ

−1
n ΣnΣ

−1
n U>n

= UnΣ
−1
n U>n .

Therefore, in view of (20a),

Mβ̂

[ N∑
n=1

∂zn β̂Λzn
(∂zn β̂)>

]
Mβ̂ =

N∑
n=1

UnΣ
−1
n U>n = Mβ̂,

or equivalently, on account of (22),

Mβ̂Λβ̂Mβ̂ = Mβ̂. (24)

At this stage, one might be tempted to conclude that Λ
β̂

=

M−1
β̂

, but this would contravene the fact that Λ
β̂

is singular.
To exploit (24) properly, we first note that, in view of (23),

P⊥
β̂
Λ
β̂
P⊥
β̂

= Λ
β̂
, (25)

so we can rewrite (24) as

Mβ̂P
⊥

β̂
Λ
β̂
P⊥
β̂

Mβ̂ = Mβ̂.

Pre- and post-multiplying the last equation by P⊥
β̂

and letting

M⊥

β̂
= P⊥

β̂
Mβ̂P

⊥

β̂

yield

M⊥

β̂
Λ
β̂
M⊥

β̂
= M⊥

β̂
.

Pre- and post-multiplying this equation by (M⊥

β̂
)+ further

yields

(M⊥

β̂
)+M⊥

β̂
Λ
β̂
M⊥

β̂
(M⊥

β̂
)+ = (M⊥

β̂
)+M⊥

β̂
(M⊥

β̂
)+. (26)

The matrix M⊥

β̂
is symmetric and its null space is, generi-

cally, spanned by β̂, so

M⊥

β̂
(M⊥

β̂
)+ = (M⊥

β̂
)+M⊥

β̂
= P⊥

β̂

(cf. [1, Cor. 3.5]). We also have (M⊥

β̂
)+M⊥

β̂
(M⊥

β̂
)+ = (M⊥

β̂
)+

by virtue of one of the four defining properties of the
pseudo-inverse [1, Thm. 3.9]. Therefore (26) can be restated
as

P⊥
β̂
Λ
β̂
P⊥
β̂

= (M⊥

β̂
)+,

which, on account of (25), implies

Λ
β̂

= (M⊥

β̂
)+. (27)

We now derive an alternate formula for the covariance
matrix of β̂, namely

Λ
β̂

= P⊥
β̂

(Mβ̂)
+
l−1P⊥

β̂
. (28)
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In this form, Λ
β̂

is explicitly expressed as Λ
β̂

= P⊥
β̂
Λ0
β̂
P⊥
β̂
,

with the pre-covariance matrix Λ0
β̂

= (Mβ̂)
+
l−1. We start by

noting that, in view of (21), β̂ is in the null space N(Xβ̂) of
Xβ̂. Generically, we may assume that N(Xβ̂) is spanned by
β̂. As Xβ̂ is symmetric, the column space of Xβ̂ is equal to
the orthogonal complement of N(Xβ̂). In particular, Xβ̂ has
rank l−1. This together with Xβ̂ being equal to Mβ̂ to a first-
order approximation implies that Xβ̂ is in fact approximately
equal to the (l−1)-truncated SVD of Mβ̂, (Mβ̂)l−1. Since the
function A 7→ A+ is continuous on the set of all l× l matrices
of constant rank l−1 [21,34,37,41], we have, approximately,

X+

β̂
= (Mβ̂)

+
l−1.

Taking into account that X+

β̂
= P⊥

β̂
X+

β̂
P⊥
β̂
, which immediately

follows from (21), we see that, again approximately,

X+

β̂
= P⊥

β̂
(Mβ̂)

+
l−1P⊥

β̂
. (29)

As a consequence of Mβ̂ being approximately equal to Xβ̂,
M⊥

β̂
(= P⊥

β̂
Mβ̂P⊥β̂ ) is approximately equal to P⊥

β̂
Xβ̂P⊥β̂ = Xβ̂.

Both M⊥

β̂
and Xβ̂ have rank l − 1, so their pseudo-inverses

are also approximately equal,

(M⊥

β̂
)+ = X+

β̂
,

by the aforementioned continuity property of the pseudo-
inverse. Hence, (29) can be restated as

(M⊥

β̂
)+ = P⊥

β̂
(Mβ̂)

+
l−1P⊥

β̂
,

and this in combination with (27) yields (28).
In the case that the matrices Σ(zn,β)−1 are replaced by

the matrices Σ(zn,β)+
r in the expression for JAML, a similar

change also affects the matrices Mβ̂, Nβ̂, and Xβ̂. With Mβ̂

suitably modified, formulae (27) and (28) continue to hold.

A.2 Homography model

If a planar homography is represented by an invertible 3 ×
3 matrix H and if m′ = [u′, v′, 1]> is the image of m =

[u, v, 1]> by that homography, then

m′ ' Hm,

where ' denotes equality up to scale. This relation can
equivalently be written as

[m′]×Hm = 0. (30)

With β = vec(H), z = [u, v, u′, v′]>, and U(z) = −m⊗ [m′]×,
we have

[m′]×Hm = U(z)>β,

and so (30) can be restated as

U(z)>β = 0. (31)

The last relation encapsulates the homography model (for
image motion) in the form conforming to the framework of
Appendix A.1. Since the 9 × 3 matrix U(z) has rank 2, the
three equations in (31) are linearly dependent and can be
reduced—by deleting any one of them—to a system of two
equations. For β , 0, the reduced system gives two func-
tionally independent constraints on z, and this has the con-
sequence that the set of image correspondences {z ∈ R4 |

U(z)>β = 0} is a submanifold of R4 of codimension 2.
Let {mn,m′n}Nn=1 be a set of image correspondences based

on which an AML estimate of a homography is to be
evolved. For each n = 1, . . . ,N, write mn = [un, vn, 1]> and
m′n = [u′n, v

′
n, 1]> and let zn = [un, vn, u′n, v

′
n]>. Suppose that

each pair mn, m′n comes equipped with a pair of 2×2 respec-
tive covariance matricesΛun,vn

,Λu′n,v′n
. For each n = 1, . . . ,N,

let

Λzn
=

[
Λun,vn

0
0 Λu′n,v′n

]
.

Since {z ∈ R4 | U(z)>β = 0} has codimension 2, the appro-
priate AML cost function is given by

JAML(β) =

N∑
n=1

β>U(zn)[Σ(zn,β)]+
2 U(zn)>β,

where

Σ(zn,β) = (I3 ⊗ β
>)B(zn)(I3 ⊗ β),

B(zn) = [∂zvec(U(z))]z=znΛzn

[
[∂zvec(U(z))]z=zn

]> ,
and, explicitly,

∂zvec(U(z)) = −[vec(e1 ⊗ [m′]×), vec(e2 ⊗ [m′]×),

vec(m ⊗ [e1]×), vec(m ⊗ [e2]×)],

with e1 = [1, 0, 0]> and e2 = [0, 1, 0]>. Now, on account
of (28), the covariance matrix of the AML estimate β̂AML =

vec(ĤAML) can be explicitly expressed as

Λ
β̂AML

= P⊥
β̂AML
Λ0
β̂AML

P⊥
β̂AML

,

where the pre-covariance matrix Λ0
β̂AML

is given by

Λ0
β̂AML

= (Mβ̂AML
)+
8 ,

Mβ̂AML
= ‖β̂AML‖

2
N∑

n=1

U(zn)[Σ(zn, β̂AML)]+
2 U(zn)>.
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B Appendix: covariance of the DLT estimate

We finally derive the formula for the covariance matrix of
the DLT estimate of a vectorised homography matrix un-
der the assumption that the estimate is evolved from a nor-
malised image data set.

Let T and T′ be two transformations for normalising the
coordinates of 2D image points,

m̃ = Tm and m̃′ = T′m′.

The maps T and T′ induce the corresponding transformation
of homographies given by

H̃ = T′HT−1.

A defining characteristic of this latter transformation is that
m′ ' Hm holds precisely when m̃′ ' H̃m̃. With β = vec(H)
and β̃ = vec(H̃), the transformation of homographies be-
comes

β̃ = (T−> ⊗ T′)β.

Let {m̃n, m̃′n}Nn=1 be a set of corresponding normalised 2D
points. Set z̃n = [ũn, ṽn, ũ′n, ṽ

′
n]> for each pair m̃n =

[ũn, ṽn, 1]> and m̃′n = [ũ′n, ṽ
′
n, 1]>, and let

Ã =

N∑
n=1

U(z̃n)U(z̃n)>.

The DLT estimate of β̃, ̂̃βDLT, based on {m̃n, m̃′n}Nn=1 is de-

fined as the minimiser ̂̃βDLT of the cost function

J̃DLT(β̃) =
β̃>Ãβ̃
‖β̃‖2

and coincides with the eigenvector of Ã corresponding to
the smallest value. The function J̃DLT is similar in form to
the function JAML—the scalar quantity ‖β‖2 plays in J̃DLT

the role of the matrices Σn in JAML. Exploiting this obser-
vation, one can immediately put forward an argument along
the lines of Appendix A.1, showing that ̂̃βDLT has the covari-
ance matrix in the form

Λ̂̃βDLT

= P⊥̂̃βDLT

Λ0̂̃βDLT

P⊥̂̃βDLT

,

where the pre-covariance matrix Λ0̂̃βDLT

is given by

Λ0̂̃βDLT

= (M̂̃βDLT
)+
8 D̂̃βDLT

(M̂̃βDLT
)+
8 ,

D̂̃βDLT
= ‖̂β̃

>

DLT‖
−2

N∑
n=1

U(z̃n)Σ(z̃n,
̂̃βDLT)U(z̃n)>.

The details of the calculation leading to the above expression
forΛ̂̃βDLT

, analogous to those presented in Appendix A.1, are

omitted.
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