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Abstract—A novel approach is presented to estimating a
set of interdependent homography matrices linked together
by latent variables. The approach allows enforcement of all
underlying consistency constraints while accounting for the
arbitrariness of the scale of each individual matrix. The input
data is assumed to be in the form of a set of homography
matrices obtained by estimation from image data with the
consistency constraints ignored, appended by a set of error
covariances associated with these matrix estimates. A cost
function is proposed for upgrading, via optimisation, the input
data to a set of homography matrices satisfying the constraints.
The function is invariant to a change of any of the individual
scales of the input matrices. The proposed approach is applied
to the particular problem of estimating a set of homography
matrices induced by multiple planes in the 3D scene between
two views. Experimental results are given which demonstrate
the effectiveness of the approach.

Keywords-multiple homographies, consistency constraints,
multi-projective parameter estimation, scale invariance, maxi-
mum likelihood, covariance.

I. INTRODUCTION

Estimation of a single homography matrix from image
measurements is an important step in 3D reconstruction,
mosaicing, camera calibration, metric rectification and other
tasks [1]. For some applications, like non-rigid motion
detection [2], [3], a whole array of homography matrices,
all intrinsically interconnected, are required. The matrices
have to satisfy consistency constraints representing the rigid-
ness of the motion and the scene. Moreover, the matrices
have to be collectively multi-homogeneous—rescaling any
individual matrix should not affect the projective informa-
tion contained in the whole matrix set. A key problem in
estimating multiple homography matrices is to enforce the
underlying consistency constraints while accounting for the
arbitrariness of the individual scales of the matrices.

As a rule, the consistency constraints are available only
in implicit form. The conventional approach to cope with
such constraints is to evolve a derivative family of ex-
plicit constraints. The new constraints are typically more
relaxed than the original ones. Adhering to this methodol-
ogy, Shashua and Avidan [4] have found that homography
matrices induced by four or more planes in the 3D scene
between two views span a 4-dimensional linear subspace.
Chen and Suter [5] have derived a set of strengthened

constraints for the case of three or more homographies in
two views. Zelnik-Manor and Irani [2] have shown that
another rank-four constraint applies to a set of so-called
relative homographies generated by two planes between
four or more views. These latter authors have also derived
constraints for larger sets of homographies and views.

Once isolated, the explicit constraints can be put to use in
a procedure whereby first individual homography matrices
are estimated from image data, and next these matrices are
upgraded to matrices satisfying the constraints. Following
this pattern, Shashua and Avidan as well as Zelnik-Manor
and Irani used low-rank approximation under the Frobe-
nius norm to enforce the rank-four constraint. Chen and
Suter enforced their set of constraints also via low-rank
approximation, but then employed the Mahalanobis norm
with covariances of input homographies. All these estimation
procedures involve input matrices coming with specific scale
factors. The underlying error measures are such that a
change of scale factors may a priori result in a different set
of estimates. Furthermore, the output matrices satisfy only
the derivative constraints so their perfect consistency is not
guaranteed.

This paper presents an alternative approach to estimating
interdependent homography matrices, which ensures that
all implicit constraints are enforced and the final estimates
are unaffected by any specific choice of individual scale
factors. A cost function is proposed for upgrading, via
optimisation, the input set of homography matrices to a set
satisfying the constraints. The function is scale change in-
sensitive. To achieve high statistical accuracy, it incorporates
the covariances of the input matrices. The utility of the
function is demonstrated in a specific application, namely
the problem of estimating a set of homography matrices
induced by multiple planes in the 3D scene between two
views. Experimental results presented in Section VI validate
the whole approach.

II. MULTI-PROJECTIVE PARAMETER ESTIMATION

We first formulate the problem of estimating a set of in-
terdependent homographies as a problem in multi-projective
parameter estimation [6]. A general multi-projective param-
eter estimation problem involves a collection X1, . . . ,XI

of k × l matrices envisaged as data points, and a collection



Θ1, . . . ,ΘI of k × l matrices treated as parameters. Each
Xi is assumed to be known only up to an individual multi-
plicative non-zero factor. The Θi’s are subject to constraints
and are meant to represent improved versions of the Xi’s.
With X = (X1, . . . ,XI) denoting the composite datum and
Θ = (Θ1, . . . ,ΘI) denoting the composite parameter, the
problem under consideration is to fit Θ to X so that the
constraints on Θ are met. Exemplifying this general problem
is the following specific problem of interest:

Fit a set of 3×3 matrices, representing planar homographies
engendered by various planes in a 3D scene under common
projections on two images, to a given set of 3× 3 matrices.

To see how the multi-projective framework applies here,
suppose that P1 = [I3 | 0] and P2 = [A | −b] are two
fixed camera matrices. Suppose, moreover, that a set of I
planes in a 3D scene have been selected. Given i = 1, . . . , I ,
let the i-th plane from the collection be characterised by a
length-4 row vector [vT

i , v
0
i ]. For each i = 1, . . . , I , the i-th

plane gives rise to a planar homography Hi from view P2

to view P1 described by the 3× 3 matrix

Hi = v0iA+ bvT
i .

Let H = (H1, . . . ,HI) be the composite of all the homog-
raphy matrices in question. With a = vec(A), where vec
denotes vectorisation, η = [aT,bT,vT

1 , v
0
1 , . . . ,v

T
I , v

0
I ]

T,
and

Π(η) = (Π1(η), . . . ,ΠI(η)), Πi(η) = v0iA+bvT
i , (1)

H can be represented as

H = Π(η). (2)

Since η has a total of 4I + 12 entries and since this
number is smaller than 9I whenever I ≥ 3, it follows
that H resides in a proper subset of all a priori length-I
sequences of 3 × 3 matrices for I ≥ 3. Thus (2) can be
seen a set of intrinsic constraints on H. Suppose that an
estimate X = (X1, . . . ,XI) of H has been generated in
some way. For example, for each i, Xi might be an estimate
of Hi individually obtained from image data. The estimation
problem at hand is to upgrade X to Θ = (Θ1, . . . ,ΘI) so
that Θ = Π(η) holds for some η and Θ is close to X in
a meaningful sense. The essence here is to find a criterion
and effective means for selecting an appropriate η.

III. AML COST FUNCTION

The general problem of fitting Θ to X with constraints
imposed on Θ is best considered as an optimisation problem.
Since the input matrices are known only up to individual
scales, the output matrices should also be determined only
to within individual scales. This can be achieved through the
use of multi-homogeneous cost functions. A cost function J

is multi-homogeneous if

J(×λΘ) = J(Θ)

for each I-tuple λ = (λ1, . . . , λI) with non-zero entries,
where ×λΘ = (λ1Θ1, . . . , λIΘI). If a cost function is
multi-homogeneous, then it is minimised not only at a single
Θ but also at all composite multiples ×λΘ.

To describe a multi-homogeneous cost function relevant
to our problem, for each i = 1, . . . , I , let

θi = vec(Θi), xi = vec(Xi),

with each vector having length kl, and let P⊥xi
denote the

kl × kl symmetric projection matrix given by

P⊥xi
= Ikl − ‖xi‖−2xix

T
i ,

with Ikl the kl×kl identity matrix. Referring to the Xi’s via
their vectorisations, suppose that associated with each xi is a
kl×kl raw covariance matrix Λ0

xi
. Any such Λ0

xi
is meant to

carry the bulk of information about the relative importance
of the individual entries of xi to within a common scale
factor. An explicit expression for Λ0

xi
in one specific case

is given in Section VI; see also [7], [8]. Upon upgrading
every Λ0

xi
to a corresponding corrected covariance matrix

Λxi
= P⊥xi

Λ0
xi
P⊥xi

,

which reflects the fact that the covariance matrix informs
about the spread of, specifically, normalised potential ver-
sions of xi, one can define an approximate maximum like-
lihood (AML) cost function by setting

JAML(Θ) =

I∑
i=1

‖θi‖−2θT
i Λ

+
xi
θi,

where, for a given matrix A, A+ denotes the Moore–
Penrose pseudo-inverse of A. Here, each summand
‖θi‖−2θT

i Λ
+
xi
θi represents the covariance-weighted,

squared sine of the angle between θi and xi—an entity
which is invariant to multiplying θi and xi by individual
non-zero scalars, and which gives a scale-invariant
discrepancy measure between θi and xi. As it turns out,
the expression for JAML(Θ) coincides with the squared
Mahalanobis distance between any aggregate of normalised,
arbitrarily signed forms of the xi’s and any aggregate of
similar forms of the θi’s. Moreover, this distance is an
approximation—to within an additive constant—of a
more refined, maximum likelihood-based Mahalanobis
distance between image-based data points underpinning
the generation of the xi’s, and respective points on the
geometric primitives described by the θi’s (cf. [9]–[12]).
With the significance of the AML cost function elucidated,
when one now takes into consideration the constraints on
Θ, the corresponding constrained minimiser of JAML can
be viewed as a statistically well-founded estimate of Θ.



IV. COST FUNCTION OPTIMISATION

Let J be a cost function for fitting Θ to X of the form

J(Θ) =

I∑
i=1

‖θi‖−2θT
i Aiθi,

where, for each i = 1, . . . , I , Ai is a kl × kl non-negative
definite matrix. Clearly, the AML cost function conforms to
this profile. Suppose that the constraints on Θ take the form

Θ = Π(η), Π(η) = (Π1(η), . . . ,ΠI(η)),

where η is a length-d vector (we have d = 4I + 12 in the
case of the constraints given in (1)). Upon introducing the
function

J ′(η) = J(Π(η)),

the constrained optimisation problem in question reduces to
that of optimising J ′, which is an unconstrained optimisa-
tion problem.

One way of optimising J ′ is to use the Levenberg-
Marquardt (LM) method. The starting point is to re-express
J ′ as

J ′(η) =

I∑
i=1

‖f ′i(η)‖2,

where, for each i = 1, . . . , I ,

f ′i(η) = fi(πi(η)),

fi(θi) = ‖θi‖−1Biθi, πi(η) = vec(Πi(η)),

with Bi a kl×kl matrix such that BT
i Bi = Ai; in particular,

Bi may be taken equal to the unique non-negative definite
square root of Ai. Let f ′(η) = [f ′T1 (η), . . . , f ′TI (η)]T. The
LM technique makes use of the Ikl × d Jacobian matrix
∂ηf
′ represented as ∂ηf ′ = [∂ηf

′
1
T | · · · | ∂ηf ′IT]T. For each

i = 1, . . . , I ,

∂ηf
′
i(η) = ∂θi

fi(πi(η))∂ηπi(η)

with

∂θi
fi(θi) = ‖θi‖−1BiP

⊥
θi
, P⊥θi

= Ikl − ‖θi‖−2θiθT
i .

The algorithm iteratively improves on an initial approx-
imation η0 to the minimiser of J ′ by constructing new
approximations with the aid of the update rule

ηn+1 = ηn − [H(ηn) + λnId)]
−1∂ηf

′(ηn)
Tf ′(ηn),

where H = ∂ηf
′T∂ηf

′ and λn is a non-negative scalar that
dynamically changes from step to step [13].

V. ESTIMATING MULTIPLE HOMOGRAPHY MATRICES

We now specifically consider the LM-based estimation of
multiple homography matrices. In this case, for each i =
1, . . . , I ,

πi(η) = vec(v0iA+ bvT
i ) = v0i a+ vi ⊗ b,

where ⊗ denotes the Kronecker product. Taking into account
that vi⊗b = (I3⊗b)vi = (vi⊗ I3)b, one readily verifies
that

∂aπi = v0i I9, ∂bπi = vi ⊗ I3,

∂viπi = I3 ⊗ b, ∂vjπj = 0 (i 6= j),

∂v0
i
πi = a, ∂v0

j
πj = 0 (i 6= j).

Representing, for each i = 1, . . . , I , ∂ηf ′i as

∂ηf
′
i = [∂af

′
i | ∂bf ′i | ∂v1

f ′i | ∂v0
1
f ′i | · · · | ∂vI

f ′i | ∂v0
I
f ′i ],

one finds furthermore that

∂af
′
i = v0i ‖πi‖−1BiP

⊥
πi
,

∂bf
′
i = ‖πi‖−1BiP

⊥
πi
(vi ⊗ I3),

∂vi
f ′i = ‖πi‖−1BiP

⊥
πi
(I3 ⊗ b), ∂vj

f ′i = 0 (j 6= i),

∂v0
i
f ′i = ‖πi‖−1BiP

⊥
πi
a, ∂v0

j
f ′i = 0 (j 6= i).

With ∂ηf
′ thus determined, all that is now needed is a

suitable initialisation for the LM method.

The initialisation scheme adopted here is based on solving
the following problem:

Given X = (X1, . . . ,XI) satisfying

λiXi = Hi (3)

for each i = 1, . . . , I , where λi is a non-zero scalar and
Hi = v0iA+bvT

i , solve for A, b, vi and v0i in terms of X.

A simple argument shows the solution of this problem is
not unique. A seed η0 = [aT0 ,b

T
0 ,v

T
1,0, v

0
1,0, . . . ,v

T
I,0, v

0
I,0]

T

for the LM method is obtained by modifying a specific
solution to the above problem. The modification reflects the
fact that the original data set X admits only an approximate
representation as in (3). We omit technical details and merely
present the steps of the initialisation procedure. These are
as follows:

1) For each i = 1, . . . , I , let v0i,0 = 1.
2) Select i0 arbitrarily from the range between 1 and I .
3) For each i 6= i0, determine two closest eigenvalues

µ
(1)
ii0

and µ
(2)
ii0

of X−1i Xi0 , and set µii0 = (µ
(1)
ii0

+

µ
(2)
ii0

)/2.
4) Take for b0 the left singular vector of the 3 × 6(I −

1) matrix obtained by juxtapositioning the matrices
µ
(1)
ii0

Xi−Xi0 and µ(2)
ii0

Xi−Xi0 , i 6= ii0 , correspond-
ing to the biggest singular value.

5) For each i 6= i0, replace µii0 with the real part of µii0 .
Also replace b0 with the vector comprising the real
parts of the elements of b0.

6) Let a0 = vec(Xi0) and vi0,0 = 0.
7) For each i 6= ii0 , set vi,0 = vi0,0 + ‖b0‖−2(µii0Xi−

Xi0)
Tb0.
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Figure 1. Synthetic data generation procedure.

VI. EXPERIMENTAL RESULTS

The method was tested on both synthetic and real data
to determine its performance under varying levels of noise.
Repeated experiments were performed in order to collect
results of statistical significance.

A. Synthetic Data

The regime adopted was to generate true corresponding
points for some stereo configuration and to collect perfor-
mance statistics over many trials in which random Gaussian
noise was added to the image points. Many configurations
were investigated and the presented results are typical.
Specifically, we conducted experiments by first choosing a
realistic geometric configuration for two cameras. Next, we
applied a random rotation to a plane that is parallel to the
first camera’s image plane (see Figure 1). In this manner we
generated 4 planes in the 3D scene. Then, 30 points in each
plane were randomly selected in the field of view of both
cameras, and these were projected onto two 500×500 pixel
images to provide “true” image points.

B. Real Data

To investigate the performance of the proposed method
on real data, we used the Model House from the Oxford
dataset [14]. The dataset consists of 10 different images of
a house together with 3D points, projection matrices and
2D point correspondences. We chose the 8th and 9th view
of the house and grouped 2D feature points into 4 planar
regions in the image: the ground plane as well as the front,
side and roof of the house. For each group of 2D points,
we determined the corresponding 3D points and fit a plane
through them. The 3D points were projected onto this plane,
and the planar points were projected onto the image. This
ensured that all the feature points in the image belonged to
planes in 3D space. Figure 2 depicts the feature points of
the Model House used in our experiments.

C. Simulation Procedure

In the case of both synthetic and real data, each image
feature point was perturbed by independent homogeneous
Gaussian noise at a preset level. For different series of ex-
periments, different noise levels were applied. This resulted
in 4 groups of noise-contaminated pairs of corresponding
points {mn,i,m

′
n,i}

Ni
n=1, i = 1, . . . , 4, corresponding to 4

different planes in the 3D scene.
The estimation methods considered were:

• DLT = direct linear transform,
• FNS = fundamental numerical scheme,
• AML = approximate maximum likelihood,
• BA = bundle adjustment.

DLT [1] is a linear method and FNS [9], [15] is an iterative
method for estimating a single homography. Both algorithms
were run on suitably normalised data. For each i = 1, . . . , 4,
two data-dependent normalisation matrices Ti and T′i were
applied to {mn,i,m

′
n,i}

Ni
n=1 using the rule

m̃n,i = Timn,i, m̃′n,i = T′im
′
n,i

to produce individually normalised corresponding points
{m̃n,i, m̃

′
n,i}

Ni
n=1. These normalised groups were used as

input to DLT and FNS to produce two sets of 4 homography
matrices ( ̂̃ΘDLT,i)

4
i=1 and (

̂̃
ΘFNS,i)

4
i=1. The final estimates

Θ̂DLT = (Θ̂DLT,i)
4
i=1 and Θ̂FNS = (Θ̂FNS,i)

4
i=1 were

obtained by applying, for each i = 1, . . . , 4, the back-
transformation Θi 7→ T′−1i ΘiTi to ̂̃

ΘDLT,i and ̂̃
ΘFNS,i,

respectively.
Our proposed AML method used as input the estimates

produced by FNS. For reasons of numerical stability, AML
required a different data normalisation procedure. Instead of
using separate normalisation matrices Ti and T′i for each
group of points, we instead combined all the points together
to produce two global normalisation matrices T and T′.
These matrices were used to produce globally normalised
corresponding points { ◦mn,i,

◦
m′n,i}

Ni
n=1, i = 1, . . . , 4, de-

fined by
◦
mn,i = Tmn,i,

◦
m′n,i = T′m′n,i.

The input of AML took the form of the FNS estimates
transferred to the (

◦
m,

◦
m′)-coordinate system via the rule

Xi = T′Θ̂FNS,iT
−1. The raw covariance matrix for the

vectorisation xi of Xi, based on { ◦mn,i,
◦
m′n,i}

Ni
n=1, was

taken to be

Λ0
xi

= (Mxi
)+8 ,

Mxi
= ‖xi‖2

Ni∑
n=1

U(
◦
zn,i)(Σ(

◦
zn,i,xi))

+
2 U(

◦
zn,i)

T.

Here ◦zn,i = [
◦
un,i,

◦
vn,i,

◦
u′n,i,

◦
v′n,i]

T is the result of combining
◦
mn,i = [

◦
un,i,

◦
vn,i, 1]

T and ◦
m′n,i = [

◦
u′n,i,

◦
v′n,i, 1]

T into a



(a) Feature points in view 8. (b) Feature points in view 9.

Figure 2. Feature points in 4 planar regions of a model house used for real data simulation.
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(a) Symmetric transfer error from ground truth on model house
data.
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(b) Symmetric transfer error from ground truth on synthetic data.

Figure 3. Comparison of methods on real and synthetic data (200 simulations).

single vector; U(
◦
zn,i) and Σ(

◦
zn,i,xi) are defined by

U(z) = −m⊗ [m′]×,

B(z) = ∂zvec(U(z))Λz

[
∂zvec(U(z))

]T
,

Σ(z,x) = (I3 ⊗ xT)B(z)(I3 ⊗ x)

with z = [u, v, u′, v′]T derived from m = [u, v, 1]T and
m′ = [u′, v′, 1]T, and with x a length-9 vector; given a
length-3 vector a, [a]× is the 3 × 3 antisymmetric matrix
such that a × y = [a]×y for each length-3 vector y;
and A+

r denotes the rank-r truncated pseudo-inverse of
the matrix A. The image data covariance matrices Λ◦

zn,i
,

incorporated in the matrices Σ(
◦
zn,i,xi), were all chosen to

be in their default form diag(1, 1, 1, 1), corresponding to
isotropic homogeneous noise in image point measurement.
The matrices Xi and covariances Λ0

xi
were next used as

input to the AML method to produce estimates which, upon
applying the back-transformation Θ 7→ T′−1ΘT, were

taken to be Θ̂AML = (Θ̂AML,i)
4
i=1.

A BA estimate Θ̂BA = (Θ̂BA,i)
4
i=1 was generated

directly from all the image data { ◦mn,i,
◦
m′n,i | n =

1, . . . , Ni, i = 1, . . . , 4} by minimising the error

4∑
i=1

Ni∑
n=1

(
d(
◦
mn,i,Πi(η)

−1m′n,i)
2 + d(

◦
m′n,i,Πi(η)mn,i)

2
)

over all 2D points mn,i and m′n,i and all parameter vectors
η. Here d(m,n) denotes the Euclidean distance between
the points m and n dehomogenised at the last, third entry.
The initial value of each mn,i and each m′n,i was taken
to be ◦

mn,i and ◦
m′n,i, respectively, and the initial value of

η was obtained from the result of AML. Then the mn,i’s,
m′n,i’s, and η were recomputed iteratively by an LM scheme
adapted to the task of minimising the error given above. With
ÂBA, b̂BA, v̂BA,i’s, v̂0BA,i’s derived from the terminal value
of η, the estimates Θ̂BA,i were finally obtained by applying



the back-transformation Θ 7→ T′−1ΘT to v̂0BA,iÂBA +

b̂BAv̂
T
BA,i.

D. Comparison of Methods

For Θ̂ = (Θ̂i)
4
i=1 generated by the DLT, FNS,

AML, and BA methods, the common distance
used to quantify data-model discrepancies was the
mean root-mean-square (RMS) symmetric transfer
error from noiseless data points mn,i and m′n,i

1

4

4∑
i=1

(
1

4Ni

Ni∑
n=1

(
d(mn,i, Θ̂

−1
i m′n,i)

2 + d(m′n,i, Θ̂imn,i)
2
))1/2

.

A comparison of the methods on real and synthetic data
is shown in Figures 3a and 3b, respectively. The results
indicate that the proposed algorithm outperformed DLT and
FNS, and achieved a very close approximation to the BA
method.

VII. DISCUSSION

The experiments suggest that our method of enforcing
consistency on the individually estimated homographies has
two clear advantages, namely a significant improvement in
the quality of the estimated homographies and the possibility
of interpreting the relative positions of the planes generating
the homographies. A surprising outcome of the experiments
is that the bundle adjustment method resulted in only a
marginal improvement compared to our proposed algorithm.
In future work we plan to explore further alternative initiali-
sations for bundle adjustment, to determine if AML is indeed
as good an approximation of the true homographies as our
experiments indicate.

VIII. CONCLUSION

This paper presents a novel approach to estimating a set
of interdependent homography matrices. The consistency
across the matrix set is achieved via implicit constraints
put on every candidate matrix set. The data is assumed to
be in the form of matrices not necessarily satisfying the
underlying constraints and appended by error covariances
associated with these matrices. A particular approximate
maximum likelihood cost function is proposed for upgrading
the input matrices to matrices satisfying the constraints. This
function is invariant to possible changes of the individual
scales of the input matrices. The scale invariance property is
an essential element of design, differentiating the introduced
function from the cost functions used earlier for multiple
homography estimation. The approach is tested on the
problem of estimating a set of homography matrices induced
by a multiple planes in the 3D scene between two views.
The Levenberg-Marquardt algorithm evolved to optimise the
proposed cost function produces results demonstrating that
the approach is feasible and efficient.
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