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ABSTRACT
Evolutionary algorithms have recently been used to create a wide

range of artistic work. In this paper, we propose a new approach for

the composition of new images from existing ones, that retain some

salient features of the original images. We introduce evolutionary

algorithms that create new images based on a fitness function that

incorporates feature covariance matrices associated with different

parts of the images. This approach is very flexible in that it can

work with a wide range of features and enables targeting specific

regions in the images. For the creation of the new images, we

propose a population-based evolutionary algorithm with mutation

and crossover operators based on random walks. Our experimental

results reveal a spectrum of aesthetically pleasing images that can

be obtained with the aid of our evolutionary process.
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1 INTRODUCTION
Evolutionary algorithms have been used in a wide range of areas

to come up with novel solutions. This includes the classical task of
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computing high performing solutions for combinatorial optimisa-

tion problems, new designs in the area of engineering, as well as

creative solutions in the areas of music and art [2, 15, 20, 24]. In the

research area of evolutionary algorithms and art, the primary aim

is to evolve artistic and creative outputs through an evolutionary

process [1, 8, 17–19, 25–27]. The composition of images has gained

some attention in the literature and mainly focuses on using tex-

tures. In these works, genetic programming is used to synthesise

procedural texture formulas [25]. Furthermore, genetic program-

ming has been used to evolve functions constructing images based

on aesthetic features [5, 6].

This paper presents an approach to carry out image composi-

tion directly based on two given images. Recently, evolutionary

processes have been used to create artistic videos through evolu-

tionary image transition. In evolutionary image transition, a source

image is transferred into a target image by an evolutionary algo-

rithm, with the images constructed during this process forming

frames of a video sequence [21, 22]. Here, we propose a variant

of evolutionary image transition. We use the evolutionary process

to create a composition of two images S and T . The key element

to achieve this goal is to use the concept of a so-called region co-

variance descriptor, which is well known and well studied in the

field of computer vision. Region covariance descriptors can be used

to describe an image based on various sets of features related to

different regions of the image. Given two images S andT , we aim to

evolve an image X which consists of a mixture of pixels from S and

T and is “close” to both S and T in terms of covariance descriptors

for both images. One of the main contributions of this paper is in

finding a way to incorporate region covariance descriptors into an

appropriate fitness function. We investigate the impact of different

choices of image features on the aesthetic properties of images

created via evolutionary image composition. We also explore the

aesthetic impact of weights with which various region covariance

descriptors can be combined together to form a fitness function.

The fitness function based on region covariance descriptors is

minimised using an evolutionary algorithm which constructs sets

of composed images. A key element in our evolutionary algorithm

are random walk algorithms used previously in the context of

evolutionary image transition. A random walk can be run as part

of a mutation phase to obtain transitional images between S and T .
In the case of crossover, a random walk can be used to generate a

crossover mask which is then used to produce an offspring from two

817



GECCO ’17, July 15-19, 2017, Berlin, Germany A. Neumann et. al.

parent individuals. The random walk operator introduced in [22]

depends on a parameter tmax which determines how many steps a

mutation operator performs. Here, with a view to developing an

efficient process, we allow for self-adaptation of tmax during the

evolutionary computation. This permits increase of tmax when the

algorithm is making sufficient progress, and decrease of tmax when

the progress is low. As a result, our evolutionary algorithm adapts

to the different stages of the optimisation process. Self-adaption is a

key element of evolutionary algorithms for continuous optimisation

problems. Recently, Doerr and Doerr [7] have modified this notion

for the discrete case and shown that a cogent use of the modification

significantly speeds up the optimisation for simple benchmark

functions. We use the self-adaptation mechanism in such a fashion

that tmax decreases by a factor when an offspring is rejected, and

increases by a factor when an offspring is accepted.

In our experimental investigations we explore how different pa-

rameters influence the artistic merit of the resulting images. We

explore the role of image features, distances between covariance

matrices and region weighting schemes. One of our key innovations

is to utilise a measure of visual attention to promote the incorpora-

tion of salient regions from both images into the new synthesised

images.

The paper is structured as follows. Section 2 details some pre-

requisites concerning a covariance descriptor. Section 3 presents

a fitness function that we propose for image composition. Sec-

tion 4 introduces an evolutionary algorithm including the mutation

and crossover operators based on random walks. In Section 5, we

present the results of our experimental investigations, and finally

finish with a short discussion and some conclusions.

2 REGION COVARIANCE DESCRIPTOR
In computer vision various image descriptors have been proposed

and used to capture essential characteristics of particular classes

of images. Amongst these the region covariance descriptor, intro-
duced by Tuzel et al. [29], has proved particularly useful for var-

ious computer vision tasks including object tracking [23], pedes-

trian detection [28], action recognition [9], and medical imagin-

ing [14]. The region covariance descriptor is constructed based

on a feature mapping that associates with each pixel in the image

a finite-dimensional vector of numerical features such as inten-

sity, colour, gradients, or filter responses. Once a feature mapping

is specified, any region in the image gives rise to the covariance

matrix of the feature mapping restricted to this region. More for-

mally, let X = (Xi j ) be a colour image with a corresponding carrier

Ω = {(i, j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n} of pixel locations. Each ma-

trix entry Xi j is a triplet of integers representing colour informa-

tion as coordinates in some colour space. Given a region of interest

R ⊂ Ω and a feature mapping ϕ : Ω → Rp , the corresponding

region covariance matrix is given by

ΛR =
1

|R | − 1
∑
(i, j)∈R

(ϕ(i, j) − µR )(ϕ(i, j) − µR )T,

where µR = |R |−1
∑
(i, j)∈R ϕ(i, j) and |R | denotes the number of

pixels in the region of interest. The matrix ΛR describes the varia-

tions of the length-n feature vectors ϕ(i, j) as (i, j) varies over the
region R. An example feature mapping, used for human detection,

Table 1: Description of Potential Features for ϕ

Notation Description

ij
i vertical spatial coordinate

j horizontal spatial coordinate

rgb

r red channel

д green channel

b blue channel

∂

�� ∂I
∂i

��
magnitude of first-order partial de-

rivative in horizontal direction�� ∂I
∂j

��
magnitude of first-order partial de-

rivative in vertical direction

∂2

�� ∂2I
∂i2

��
magnitude of second-order partial

derivative in horizontal direction�� ∂2I
∂j2

��
magnitude of second-order partial

derivative in vertical direction�� ∂2I
∂i∂j

��
magnitude of second-order mixed

partial derivative

edge

√( ∂I
∂i

)
2

+
( ∂I
∂j

)
2

magnitude of edge response

tan
−1

(�� ∂I
∂i

��/�� ∂I
∂j

��)
edge orientation

hsv

h hue (HSV colour space)

s saturation (HSV colour space)

v value (HSV colour space)

is

ϕ(i, j) =
[
i, j, Ii j ,

( ∂I
∂i

)
i j ,

( ∂I
∂j

)
i j ,

( ∂2I
∂i2

)
i j ,

( ∂2I
∂j2

)
i j ,√( ∂I

∂i
)
2

i j +
( ∂I
∂j

)
2

i j , tan
−1

(��( ∂I
∂i

)
i j
��/��( ∂I

∂j
)
i j
��) ]T ,

where Ii j is the image intensity at (i, j),
( ∂I
∂i

)
i j ,

( ∂2I
∂i2

)
i j , . . . are in-

tensity derivatives at (i, j), and the last two terms are the magnitude

of edge response and the edge orientation at (i, j). In line with the

convention adopted by MATLAB’s rgb2gray function, the image

intensity can be suitably defined by

Ii j = 0.2989XR
i j + 0.5870X

G
ij + 0.1140X

B
i j ,

where Xi j = [XR
i j ,X

G
ij ,X

B
i j ]

T
is the decomposition of the colour

vector Xi j into RGB components. In this work we explore several

candidate feature mappings obtained by selecting component ele-

ments from the set of features described in Table 1.

There are several advantages of using covariance matrices as

region descriptors. The feature mapping proposes a natural way

of fusing multiple features which might be correlated. A single

covariance matrix extracted from a region is usually enough to

match the region in different views and poses. The noise corrupt-

ing individual samples are largely filtered out through averaging

which is intrinsic to the process of covariance computation. The

covariance descriptors are low dimensional—each matrix ΛR has

only p(p + 1)/2 different entries (p is often less than 10), which

is a number significantly smaller than the number of histogram

bins (going into hundreds) or of raw pixels (going into thousands)

used by other descriptors. Moreover, each ΛR does not preserve

information regarding the ordering and the number of underlying
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grid points. This implies a certain degree of scale and rotation in-

variance over the regions in different images. However, it should

be noted that this near invariance is largely reduced if the feature

mapping contains explicit information regarding the orientation of

points, such as the gradient of image intensity. The same is true for

illumination.

Covariance matrices are positive-definite and one can speak

about a distance between a pair of covariance matrices once a

distance measure is defined between members of the set of all

real positive-definite matrices. Let Sym(p) denote the set of all

p ×p symmetric real matrices, and let Sym+(p) denote the subset of
Sym(p) comprised of all p × p positive-definite matrices in Sym(p).
Sym+(p) can be endowed with a variety of distance measures [12,

13]. In what follows we shall consider three specific distances. One

is the Euclidean metric given by

distE(P ,Q) = ∥P −Q ∥F ,

where ∥·∥
F
denotes the Frobenius norm, and P and Q are members

of Sym+(p). Another is the Log-Euclidean metric given by

distL(P ,Q) = ∥log P − logQ ∥F ,

where log denotes the principal matrix logarithm [3]. (For an invert-

ible real matrix without eigenvalues on the negative real axis, there

always exists a unique real matrix logarithm, called the principal log-

arithm, whose eigenvalues lie in the strip {z ∈ C | −π < Imz < π };
cf. [10, Theorem 1.31].) Yet another distance measure is the affine-
invariant metric given by

distA(P ,Q) =



log(P−1Q)




F
=




log (
P−1/2QP−1/2

)



F

(cf. [16, Chap. XII]). The label “affine-invariant” reflects the fact

that distA is invariant under each mapping of the form P 7→ APAT
,

where A is a real invertible matrix A; that is,

distA(P ,Q) = distA(APAT,AQAT)

for all P ,Q ∈ Sym+(p) and all invertible p × p matrices A. The
affine-invariant metric can alternatively be written as

distA(P ,Q) =
( p∑
i=1

log
2 λi (P−1Q)

) 1

2

, (1)

where λi (P−1Q), 1 ≤ i ≤ p, are the eigenvalues of P−1Q . As the
matrix P−1Q is similar to the symmetric matrix P−1/2QP−1/2, the
eigenvalues λi (P−1Q) are all positive and hence the right-hand side
of (1) is well defined for all P and Q in Sym+(p).

3 COVARIANCE-BASED FITNESS FUNCTION
Given two images S and T both of sizem × n, we define the fitness
of an image X of sizem × n with respect to S and T . The fitness of
the mixed imageX is evaluated using region covariance descriptors

that characterise how similar parts of the generated image are to

both input images. The location and shape of the regions associated

with the covariance descriptors can be chosen arbitrarily and are

based on the personal preference of the artist. In this work we

limit ourselves to square regions of interest arranged in a grid-like

manner. In particular, we consider regions R(c,d ) = {(i, j) | |i −c | ≤
l , |j − d | ≤ l}, which represent squares of size (2l + 1) × (2l + 1)

Figure 1: Illustration of overlapping square regions of inter-
est.

centred at (c,d), where (c,d) runs over a grid of pixels G. The grid
is defined as

G =

(c,d)
��������
c = (l + 1) + pl , p = 0, 1, . . . ,

⌊
m − l
l

⌋
− 1

d = (l + 1) + ql , q = 0, 1, . . . ,

⌊
n − l
l

⌋
− 1

 ,
which results in half-overlapping square regions of interest (see

Figure 1).

To measure the similarity between the generated image and the

input images we propose the fitness function

f (X , S,T ) =
∑
(c,d )∈G

(
wS
(c,d )dist

(
ΛXR(c,d ) ,Λ

S
R(c,d )

)
+ wT
(c,d )dist

(
ΛXR(c,d ) ,Λ

T
R(c,d )

))
,

where dist is one of the distance functions described in Section

2, and wS
(c,d ) ∈ [0, 1] and wT

(c,d ) ∈ [0, 1] are weights associated

with the region R(c,d ) that can be used to emphasise the local

contribution of the images S and T in the mixing process.

In addition to the fitness function, we put forward a constraint.

Let cS (X ) = |{Xi j | Xi j = Si j }| be the number of pixels in X that

are set to S and cT (X ) = |{Xi j | Xi j = Ti j }| be the number of pixels

where X and T agree. We minimise the fitness function f subject

to the constraint

c(X ) = |cS (X ) − cT (X )| ≤ B,

where B is an upper bound on how much the number of pixel in X
from the two images S and T are allowed to differ.

4 EVOLUTIONARY ALGORITHM FOR IMAGE
COMPOSITION

In this section, we introduce our algorithm for creating artistic

images using region covariance descriptors and an evolutionary

image transition processes. Our method takes as input two images,

S = (Si j ) and T = (Ti j ) of sizem × n, and produces a new images

X = (Xi j ) of the same size, that is a mixture of the input images,

i.e. Xi j ∈ {Si j ,Ti j } for each 1 ≤ i ≤ m and each 1 ≤ j ≤ n. The
mixed images are generated using the genetic algorithm given in

Algorithm 1. The algorithm uses a parent population of µ images

and produces in each iteration one image Y by crossover with

probability pc or by mutation with probability 1 − pc . The initial
population is a multi-set of images of the given images S and T .
More precisely, each initial individual Pi in the initial population
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Algorithm 1 (µ + 1) GA for evolutionary image composition

Require: S and T are images

1: Initialise population P = {P1, . . . , Pµ }
2: while not termination condition do
3: Select an individual Pi ∈ P uniformly at random

4: if rand() < pc then ▷ Crossover

5: Select Pj ∈ P \ Pi uniformly at random

6: if rand() < 0.5 then ▷ See Section 4.2 for tcr
7: Y ← RandomWalkMutation(X ,Z ,tcr)
8: else
9: Y ← RectangularCrossover(Pi ,Pj )

10: Pi ← Selection(Pi ,Y )
11: else ▷ Mutation

12: if rand() < 0.5 then
13: Y ← RandomWalkMutation(Pi ,S ,tmax)

14: else
15: Y ← RandomWalkMutation(Pi ,T ,tmax)

16: Pi ← Selection(Pi ,Y )
17: Adapt tmax ▷ See Section 4.1.

18: return P ▷ Result is a population of evolved images.

is chosen uniformly at random from {S,T }. In order to produce a

diverse set of images, an offspring Y is only competing against the

first parent Pi for survival. This leads to a low selection process

and produces a diverse set of images in the final population. We

describe the different components of the genetic algorithm in the

following section.

4.1 Self Adaptive Random Walk Mutation
Our genetic algorithm uses a variant of the random walk mutation

introduced in [22]. The mutation operator is shown in Algorithm 2.

Given an image Z the random walk starts at a random pixel of the

current image X and produces an offspring Y from X by setting

each visited pixel Yi j to the value of Zi j .
The random walk moves from a current pixel Xi j either left,

right, up, or down to visit the next pixel and does this for tmax steps.

To formalise this, we define the neighbourhood N (Xi j ) of Xi j as
N (Xi j ) = {X(i−1)j ,X(i+1)j ,Xi(j−1)Xi(j+1)}

and choose in each step an element of N (Xi j ) uniformly at random.

We use modulo the dimensions of the image which implies that the

walk may wrap around the boundaries of the image.

Algorithm 2 RandomWalkMutation(X ,Z , tmax)

Require: X and Z are images

1: Y ← X
2: Yi j ∈ Y ▷ Choose starting pixel uniformly at random

3: Yi j ← Zi j
4: t ← 1

5: while t ≤ tmax do
6: Choose Ykl ∈ N (Yi j ) uniformly at random

7: i ← k , j ← l and Yi j ← Zi j
8: t ← t + 1
9: return Y ▷ Result is a mutated image.

Figure 2: Pairs of images S (left column) andT (right column).
Image credit (top row): ©Angélica Dass.

Figure 3: An image and its corresponding saliency mask.

Given a current image X , our genetic algorithm uses the random

walk mutation to either paint all the visited pixels with the same

values as in S or T . Whether to choose S or T is decided uniformly

at random for each mutation operation. In this way, the algorithm

is able to produce images that are mixtures of S andT and minimise

the given fitness function. Each random walk mutation is run for

tmax steps.

Self Adaptation. When the algorithm successfully minimises the

fitness function, we choose to increase the length of random walks

by increasing tmax. On the other hand, if progress can only be

achieved by small random walk mutations, we decrease tmax. In

particular, we employ the approach for adjusting discrete parame-

ters recently introduced by Doerr and Doerr [7]. Their approach

adapts the classical 1/5-rule adaptation for evolution strategies in

[4] to the discrete setting. Our approach increases tmax in the case

of a success and decreases tmax if the new offspring is not accepted.

With the benefit of a self-adjustable mechanism, tmax can take on

values in tLB ≤ tmax ≤ tUB, where tLB is a lower bound on tmax and

tUB is an upper bound on tmax. This differs from the approach in
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Figure 4: Image composition with different features. Rows 1, 2 and 3 correspond to Feature Sets 1, 2 and 3, respectively. Note
the structure that emerges with the first feature set.

[7], where the offspring population size is reduced in the case of a

success and increased in the case of a failure.

For a successful mutation, we set

tmax B min {F · tmax, tUB}
and for an unsuccessful mutation, we set

tmax B max

{
F−1/k · tmax, tLB

}
,

where F > 1 is a real value and k ≥ 1 an integer which determines

the adaptation scheme.

The scheme implements a 1/(k + 1)-rule where F determines the

size of the step changes dependent on the current value of tmax. For

our experimental investigations, we set tLB = 50, tUB = 5000, F = 2,

k = 8 based on preliminary experimental investigations. Note that

the use of tmax in Algorithm 2 does not require it to be an integer.

For a positive real value tmax, the mutation operator will carry out

⌊tmax⌋ steps of the random walk.

4.2 Crossover
We consider two crossover operators which take two parents and

produce one child.

The first crossover operator produces an offspring Y by taking

the image of the first parent Pi and performing a random walk for

tcr steps on the image of the second parent Pj . This means that the

offspringY can be produced by calling RandomWalkMutation(Pi ,
Pj , tcr). For our experimental investigations in this paper, we set

tcr = 10000, i.e. each random walk crossover mask is generated

by a random walk consisting of 10000 steps. Note, that this value

is independent of tmax which is adapted during the mutation step.

The reason is that we always want to make sure that crossover

reduces an offspring which has sufficiently large parts from both

parents.

The second crossover operator that we dub Rectangular Crossover

produces an offspring where all entries are copied from parent Pi
except from a randomly specified rectangle R. The upper left point
of the rectangle is chosen uniformly at random from the image.

The width and the height of the image is chosen as a random inte-

ger in {1, . . . ,m/10} and {1, . . . ,n/10}, respectively. Values where
the width and/or height would exceed the image boundaries are

ignored.

Both crossover operators are focused on a local part of the target

image. This facilitates the creation of offspring that have an iden-

tified part of the image of the second parent substituted into the

image of the first parent. The hope is that the optimisation process

benefits from this structured way of creating offspring.

5 EXPERIMENTS
Our experiments were designed to meet a threefold objective: (1)

we wished to investigate the impact of different region covariance

features on the resulting images; (2) we wanted to discover how

different weighting schemes for covariance matrices influence the

results; and (3) we wished to understand the influence that the

distance measures have on the final results.

The pairs of images S and T for all of our experiments are de-

picted in Figure 2. For each setting investigated in this section, we

ran our genetic algorithm for 2000 generations with a population

size of µ = 4 and and crossover probability pc = 0.2.
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Figure 5: Image composition with different covariance weighting schemes. Rows 1, 2 and 3 correspond towS
(c,d ) set to 0.25, 0.5

and 0.75 andwT
(c,d ) set to 0.75, 0.5 and 0.25, respectively. In the last row the weights were set using an image saliency algorithm.

The saliency algorithm strikes a consistent balance between notable regions in both images.

5.1 Impact of Features
Our first set of experiments were focused on characterising how

the choice of features may influence the resulting image. With

reference to Table 1 we chose 3 sets of features as follows:

Set 1:
[
i, j, r ,д,b,

√( ∂I
∂i

)
2

+
( ∂I
∂j

)
2

, tan−1
(�� ∂I
∂i

��/�� ∂I
∂j

��) ]T
;

Set 2: [i, j,h, s,v]T;

Set 3:
[
h, s,v,

√( ∂I
∂i

)
2

+
( ∂I
∂j

)
2

, tan−1
(�� ∂I
∂i

��/�� ∂I
∂j

��) ]T
.

For all experiments in this section we considered a grid of equi-

spaced square region covariance descriptors (l = 25 pixels). We

set both sets of weights wS
(c,d ) and w

T
(c,d ) to 0.5, and utilised the

Euclidean distance as our measure of similarity between covariance

matrices.

The results in Figure 4 demonstrate that the three populations

evolve differently depending on the feature set. Feature Set 1 pro-

duced the most visually pleasing results, with the composite image

incorporating facial features from both subjects. We attribute this

to the correlations that are captured between pixel locations and

edge features (magnitude and orientation) in the first feature set,

and not in the other two feature sets.

5.2 Impact of Different Weightings
In the second set of experiments we explored the consequence

of using different weights for the region covariance matrices. We

limited ourselves to two weighting schemes: uniform and saliency-

based. In the uniform regime all of the weightswS
(c,d ) associate with

S were set to the same value, and, similarly, all the weightswT
(c,d )

associated with T were also fixed. In particular, for simulations 1, 2

and 3, we setwS
(c,d ) to 0.2, 0.5 and 0.75 andwT

(c,d ) to 0.75, 0.5 and

0.25, respectively.

In contrast, for a simulation with saliency-based weighting, we

utilised the image saliency algorithm of [11] to assign weights

for each region covariance descriptor. The purpose of the saliency

algorithm is to predict human fixation points, which in turn are

used as a measure of visual attention. The saliency algorithm takes

as input an image, and produces a new image of the same size

which can be interpreted as a probability map designating which

regions of an image a human would pay most of their attention to
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Figure 6: Image composition with different covariance distances. Rows 1, 2 and 3 correspond to distance metrics distE, distA
and distL, respectively. Note how the Euclidean distance yields patchy results, whereas the other distance measures result in
more structured images.

Figure 7: Image composition using Feature Set 1 with saliency-based weighting and the Log-Euclidean distance measure.

(see Figure 3). We ran the saliency algorithm on both S and T . The
weights for wS

(c,d ) and w
T
(c,d ) were taken from the saliency maps

associated with S and T , respectively.

For all experiments in this section we used Feature Set 1 and

employed a grid of equispaced square region covariance descriptors

823
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(l = 20 pixels). We measured the similarity between covariance

matrices using the Log-Euclidean distance.

The results of our experiment are depicted in Figure 5. As ex-

pected, when uniform weights are used the global relative contribu-

tion of the image S can be traded-off against the global relative

contribution of the image T . The benefit of the saliency-based

weighting scheme is that it can automatically produce visually

pleasing results that strike a balance between notable regions in

both images.

5.3 Impact of Distance Measures
In the third and final set of experiments we investigated the utility

of different metrics for covariance matrices. Once again, a notable

structure emerges. The Euclidean distance measure produced infe-

rior results, with the images taking on a very patchy and noisy ap-

pearance. In contrast, the images generated using the Log-Euclidean

or affine-invariant distance were much more cohesive and interest-

ing. The results presented in Figure 6 are based on grid of equis-

paced square region covariance descriptors (l = 20 pixels) using

saliency-based weights and Feature Set 1.

6 DISCUSSION
Our experimental examinations suggest that the best results are ob-

tainedwhen Feature Set 1 is used in conjunctionwith saliency-based

weighting and a Log-Euclidean distance measure. To verify this

hypothesis, we deployed our genetic algorithm one more time with

these parameters on all three image pairs. The results presented

in Figure 7 confirm our hypothesis. In all cases, our algorithm

produced a population of new aesthetic images that incorporate

pertinent regions from both input images. These images mimic

the distinctive styles of the self portraits, combining the explo-

sive colours of the fauvism movement and the multiple emotions

displayed in the cubism abstract art style.

7 CONCLUSION
We have introduced a new approach of image composition based

on feature covariance matrices. This approach facilitates the com-

position of novel artistic images. We have introduced a genetic

algorithm evolving a set of images by crossover and mutation oper-

ators based on random walk. For our experimental investigations,

we have considered different pairs of images and compared the final

populations showing the resulting images with respect to different

parameters.
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