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Abstract A simple and fast ellipse estimation method is
presented based on optimisation of the Sampson distance
serving as a measure of the quality of fit between a candidate
ellipse and data points. Generation of ellipses, not just con-
ics, as estimates is ensured through the use of a parametri-
sation of the set of all ellipses. Optimisation of the Samp-
son distance is performed with the aid of a custom variant
of the Levenberg–Marquardt algorithm. The method is sup-
plemented with a measure of uncertainty of an ellipse fit in
two closely related forms. One of these concerns the uncer-
tainty in the algebraic parameters of the fit and the other
pertains to the uncertainty in the geometrically meaningful
parameters of the fit such as the centre, axes, and major axis
orientation. In addition, a means is provided for visualising
the uncertainty of an ellipse fit in the form of planar confi-
dence regions. For moderate noise levels, the proposed es-
timator produces results that are fully comparable in accu-
racy to those produced by the much slower maximum likeli-
hood estimator. Due to its speed and simplicity, the method
may prove useful in numerous industrial applications where
a measure of reliability for geometric ellipse parameters is
required.
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1 Introduction

The task of fitting an ellipse to data is frequently encoun-
tered in numerous disciplines. This is partially explained
by the fact that even though very few shapes and trajec-
tories are perfectly elliptical, non-elliptical shapes and tra-
jectories can often be modelled using one or more ellipses.
Recently, Wong et al. [60] compiled a comprehensive list
of ellipse fitting applications with items such as human gait
analysis, grain sorting, steel coils quality assurance, and cell
segmentation—to name a few. All of these applications re-
quire an ellipse fitting method that is (1) simple to imple-
ment, (2) computationally efficient, (3) accurate, (4) capa-
ble of delivering a measure of uncertainty associated with
any estimate generated, and (5) always produces a fit in the
form of an ellipse. Unfortunately, there is currently no el-
lipse fitting method available that simultaneously satisfies
all of these requirements.

For example, the maximum likelihood ellipse estimation
method in its classic form seeks to minimise the sum of the
orthogonal distances between data points and a candidate
ellipse. Minimising the orthogonal distance, however, is a
complicated process in practice [1, 8, 10, 19, 32, 53, 61]. It
necessitates projecting points onto conics—a task for which
there is no closed form solution, and one that has been de-
scribed by numerous authors as time consuming and numer-
ically unstable [2,11]. So even though the classic maximum
likelihood estimation method, also called the orthogonal dis-
tance regression method, yields accurate results, it is often
inadequate for many practical scenarios.

There are also algebraic ellipse fitting techniques based
on error measures that determine how well a collection of
data points satisfies the ellipse equation in a certain least
squares sense [3,25,33,48]. Least squares error measures are
different from the orthogonal distance, but are much easier
to compute and much easier to minimise. Therefore, alge-
braic ellipse fitting methods are typically fast and simple,
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and some can even always generate ellipses, not just conics,
as estimates [17, 21, 42, 59]. However, in comparison to the
orthogonal distance regression method, algebraic ellipse fit-
ting techniques often produce estimates of inferior accuracy.

Another class of ellipse fitting methods comprises
techniques tagged with labels such as gradient-weighted,
approximate maximum likelihood (AML), and hyper-
accurate [28, 29, 55]. The methods in this class seek a bal-
ance between the accuracy of the orthogonal distance re-
gression method and the simplicity of algebraic fitting meth-
ods. What differentiates these techniques from pure alge-
braic schemes is that they have credible statistical founda-
tions [9, 13] and are capable of accommodating the uncer-
tainty associated with a data point. One particular estimation
method that has stood the test of time was proposed indepen-
dently by Turner [58] in 1974 and by Sampson [50] in 1982.
The cost function underlying this method falls into the cate-
gory of approximate maximum likelihood cost functions and
is often called the Sampson distance [24, Sect. 4.2.6]. For
moderate noise levels, the Sampson distance is an excellent
approximation of the orthogonal distance. Whilst ellipse fit-
ting methods based on the Sampson distance are typically
simple, fast, and accurate at moderate noise levels, most do
not guarantee generation of an estimate in the form of an
ellipse.

An ellipse fitting method that is fast, simple, utilises the
Sampson distance, and guarantees a genuine ellipse fit was
recently proposed by Szpak et al. [54]. To enforce the ellip-
ticity constraint, the method uses a barrier term added to the
AML cost function. In this paper, we show that an explicit
barrier term may be dispensed with in favour of a parametri-
sation of the set of all ellipses that leads to the implicit en-
forcement of the ellipticity constraint. The estimator that we
develop based on this parametrisation is conceptually and
practically simpler than its immediate predecessor involving
a barrier term. As a further extension of the barrier method,
we develop a measure of uncertainty of a Sampson distance
based ellipse estimate in two closely related forms. One of
these concerns the uncertainty in the algebraic parameters of
the estimate and the other pertains to the uncertainty in the
geometrically meaningful parameters of the estimate such as
the centre, axes, and major axis orientation. We also provide
a means for visualising the uncertainty of an estimate in the
form of planar confidence regions. By providing a measure
of uncertainty of an ellipse estimate, we facilitate principled
statistical decision making for users of our algorithm. Thus,
although the algorithm uses a parametrisation of the ellipses
that has no immediate geometric significance, practitioners
can apply our algorithm and still have a measure of reliabil-
ity of the geometrically meaningful parameters of an ellipse
estimate.

2 Background

A conic section, or simply a conic, is the locus of solutions
x = [m1,m2]T in the Euclidean plane R2 of a quadratic equa-
tion

am2
1 + bm1m2 + cm2

2 + dm1 + em2 + f = 0, (2.1)

where a, b, c, d, e, f are real numbers such that a2
+

b2
+ c2

> 0. With θ = [a, b, c, d, e, f ]T and u(x) =

[m2
1,m1m2,m

2
2,m1,m2, 1]T

, Eq. (2.1) can equivalently be
written as

θ
T u(x) = 0. (2.2)

Any multiple of θ by a non-zero number corresponds to the
same conic. A conic is non-degenerate if the determinant of
the conic

D =

∣∣∣∣∣∣∣∣∣
a b/2 d/2

b/2 c e/2
d/2 e/2 f

∣∣∣∣∣∣∣∣∣
is non-zero. When D = 0, the conic is degenerate. A non-
degenerate conic is either an ellipse (possibly with no graph,
that is, an ellipse reduced to an empty set), a parabola, or a
hyperbola depending on whether the discriminant ∆ = b2

−

4ac is negative, zero, or positive, respectively. A degenerate
conic can be either: a single point (∆ < 0); an empty set,
a straight line, or two parallel lines (∆ = 0); or a pair of
intersecting lines (∆ > 0). By convention, degenerate conics
with ∆ < 0, ∆ = 0, and ∆ > 0 are referred to as degenerate
ellipses, degenerate parabolas, and degenerate hyperbolas,
respectively.

The condition ∆ < 0 characterising the ellipses (non-
degenerate or otherwise, including the ellipses with no graph
or reduced to a point) can alternatively be written as

θ
TFθ > 0, (2.3)

where

F =

[
1 0
0 0

]
⊗


0 0 2
0 −1 0
2 0 0


and ⊗ denotes Kronecker product [35]. Hereafter, of all con-
ics, we shall specifically be concerned with ellipses.

The task of fitting an ellipse to a set of points x1, . . . , xN
requires a meaningful cost function that characterises the
extent to which any particular θ fails to satisfy the sys-
tem of N copies of equation (2.2) associated with x = xn,
n = 1, . . . ,N. Once a cost function is selected, the corre-
sponding ellipse fit is generated by minimising the cost func-
tion subject to the constraint (2.3).
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Effectively, though not explicitly, Varah [59] and
Fitzgibbon et al. [17] proposed to use for ellipse fitting the
direct ellipse fitting cost function defined by

JDIR(θ) =

θ
TAθ

θ
TFθ

if θTFθ > 0,

∞ otherwise,

where A =
∑N

n=1 u(xn)u(xn)T
. The minimiser θ̂DIR of JDIR is

the same as the solution of the problem

minimise θ
TAθ

subject to θ
TFθ = 1,

(2.4)

and it is in this form that θ̂DIR was originally introduced.
The representation of θ̂DIR as a solution of the problem (2.4)
makes it clear that θ̂DIR is always an ellipse. Extending the
work of Varah and Fitzgibbon et al., Halı́ř and Flusser [21]
introduced a numerically stable algorithm for calculating
θ̂DIR.

Another cost function for ellipse fitting, and in fact more
generally for conic fitting, was first proposed independently
by Turner [58] and Sampson [50] and then popularised, in
a broader context, by Taubin [56] and Kanatani [27]. It is
associated with many names such as the Sampson, gradient-
weighted, and approximated maximum likelihood (AML)
distance or cost function, and takes the form

JAML(θ) =

N∑
n=1

θ
TAnθ

θ
TBnθ

with

An = u(xn)u(xn)T and Bn = ∂xu(xn)Λxn
∂xu(xn)T (2.5)

for each n = 1, . . . ,N. Here, for any length-2 vector y,
∂xu(y) denotes the 6 × 2 matrix of the partial derivatives
of the function x 7→ u(x) evaluated at y, and, for each
n = 1, . . . ,N, Λxn

is a 2 × 2 symmetric covariance matrix
describing the uncertainty of the data point xn [6, 13, 27].
The function JAML is a first-order approximation of a gen-
uine maximum likelihood cost function JML which can be
evolved based on the Gaussian model of errors in conjunc-
tion with the principle of maximum likelihood. In the case
when identical independent homogeneous Gaussian noise
corrupts the data points, JML reduces—up to a numeric con-
stant depending on the noise level—to the sum of orthogo-
nal distances of the data points and an ellipse. For the spe-
cific task of ellipse fitting, the search space for minimising
JAML is reduced from the set of all length-6 vectors to the
set E = {θ | ∆ < 0} of all ellipses, each member of the lat-
ter set being conventionally referred to as a feasible point.
The approximated maximum likelihood estimate θ̂AML is,
by definition, the minimiser of JAML selected from among
all feasible points.

The existence of a minimiser of JAML in the set of all
ellipses is not always guaranteed. In contrast, there always
exists a minimiser of JAML in the joint set EP = {θ | ∆ ≤ 0}
of ellipses and parabolas. Indeed, JAML is homogeneous in
θ (meaning that JAML(λθ) = JAML(θ) for any scalar fac-
tor λ) and this implies that the range of JAML—the set of
values that JAML can take—is the same as the range of
the restriction of JAML to the five-dimensional unit sphere
S5 = {θ | ‖θ‖ = 1}, where ‖ · ‖ denotes the Euclidean norm.
Consequently, the search for a minimiser of JAML within EP
may be restricted to the search within the intersection of EP
and S5, EP ∩ S5, characterised by the conjunction of the
conditions ∆ ≤ 0 and ‖θ‖ = 1. This intersection is a closed
subset of S5 and as such is compact in a topological sense.
Now, the function JAML is continuous, and, given that any
continuous function attains a minimum on a compact set,
the function JAML, considered over EP∩ S5, attains its min-
imum on EP ∩ S5.

Typically, when the data set adheres sufficiently closely
to a generative model producing data points based on a bona
fide ellipse, the minimiser of JAML within EP will represent
a genuine ellipse. In some scenarios, however, the minimiser
will be a member of P = {θ | ∆ = 0}, the “parabolic” bound-
ary of the set E of all ellipses. For example, when all data
points lie on a line [7], the minimiser interpreted geometri-
cally coincides with the line on which the points lie, this line
being an instance of a degenerate parabola. In other words,
the problem of minimising JAML within the set of ellipses
is ill posed, and solving it requires some form of regularisa-
tion. We shall regularise the minimisation problem by adap-
tively restricting the search domain for a minimiser to a sub-
set of E. The restriction procedure will take the form of a
stopping criterion for an optimisation algorithm, preventing
iteratively generated estimates from going too close to the
set of parabolas P. While this approach involves a good deal
of arbitrariness, one has to immediately point out that such
arbitrariness is unavoidable: no ill-posed problem admits a
unique, or canonical, regularisation.

3 Optimisation Using a Barrier Term

In our previous work [54] we developed a technique for
near-optimising JAML subject to the ellipticity constraint.
The method uses the merit function

P(θ, α) = JAML(θ) + αg(θ),

where g is a barrier function of the form

g(θ) =
‖θ‖

4

(θTFθ)2 = ‖θ‖
4
∆
−2

and α is a positive number. A solution representing an ellipse
is sought in the form of a local minimiser of P. The critical
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property of the barrier function is that it tends to infinity as
θ approaches the parabolic boundary P = {θ | θ

TFθ = 0}
between the feasible elliptic region E = {θ | θ

TFθ > 0} and
the infeasible hyperbolic region H = {θ | θ

TFθ < 0} of the
search space. This property ensures that if P is optimised in
sufficiently short steps starting from a feasible point, then
any local miminiser reached on the way is feasible; and if
the value of α is small enough, this local minimiser is a good
approximation of a local minimiser of JAML. By design, the
parameter α is set to a very small number (of the order of
10−15). The search for an optimal solution is carried out by
a fast converging iterative procedure that takes the direct el-
lipse fit θ̂DIR for a seed. The technique turns out to be statis-
tically accurate and computationally efficient. However, an
issue that might be of concern with regard to the method is
that it produces ellipse estimates that are not exact minimis-
ers of JAML.

4 Optimisation Using a Parametrisation

Below we present a method capable of isolating ellipse es-
timates that are exact minimisers of JAML within the feasi-
ble part of the search space, provided that JAML admits a
local minimum on that part. When JAML has no local min-
imum amongst the ellipses, the method delivers an ellipse
estimate which is an approximation of a (possibly gener-
alised) parabola constituting the minimiser of JAML within
the joint set of ellipses and parabolas. The barrier term from
our previous method plays no role here—this term is simply
discarded. The method searches for a solution by employ-
ing a parametrisation of the set of all ellipses. The search
is conducted with the aid of a specially crafted Levenberg–
Marquardt (LM) algorithm, which ensures a fast conver-
gence towards the optimal solution starting from an initial
guess based on the direct ellipse fit. The specific design of
our proposed algorithm is a substantial contribution of the
present paper.

4.1 A Parametrisation of the Set of All Ellipses

The set of all ellipses admits a natural parametrisation. To
reveal it, consider an ellipse described by θ. Then a , 0 and
c , 0, for otherwise—should a = 0 or c = 0 hold—the dis-
criminant ∆ = b2

−4ac = b2 would be non-negative, and this
would contradict the fact that for ellipses the discriminant is
always negative. Given this and the fact that the scale of θ
is irrelevant as far as the determination of the underlying el-
lipse is involved, it is safe to assume that a = 1. Under this
assumption the condition ∆ < 0 becomes 4c > b2, and let-
ting b = 2p, we see that c > p2, or, equivalently, c = p2

+q−2

for some q. It is now clear that the set of ellipses can be

parametrised as

θ = κ(η), κ(η) = [1, 2p, p2
+ q−2

, r, s, t]T
, (4.1)

with η = [p, q, r, s, t]T running over all possible length-5
vectors. A variant of the above parametrisation that will be
particularly useful in what follows is given by

θ = π(η), π(η) = ‖κ(η)‖−1
κ(η). (4.2)

The significance of the unit-normalisation step will become
apparent when we proceed to develop our customised ver-
sion of the LM algorithm.

4.2 Optimisation Algorithm

With the parametrisation (4.2) in place, the effective func-
tion to optimise is

J′AML(η) = JAML(π(η)).

We shall next evolve a modified version of the LM algo-
rithm for efficient optimisation of this function. It will be
convenient to precede the description of our version of the
LM scheme with a presentation of the standard form of the
method.

4.2.1 Initialisation

Because the LM algorithm is an iterative technique, both
its standard and modified form will require a proper ini-
tialisation. An initial value of η, η0, can be extracted from
any estimate θ̂ representing a genuine ellipse by setting
η0 = c(θ̂), where c is the composition of the mapping
θ 7→ θ/θ1 = [1, θ2/θ1, . . . θ6/θ1]T and the inverse of the map-
ping η 7→ κ(η). Specifically, c(θ) = [p, q, r, s, t]T is given
by

p =
θ2

2θ1
, q =

θ3

θ1
−

(
θ2

2θ1

)2−1/2

,

r =
θ4

θ1
, s =

θ5

θ1
, t =

θ6

θ1
.

(4.3)

As the direct ellipse fit always represents a genuine ellipse,
a natural choice for η0 is c(θ̂DIR).

4.2.2 Standard Form of LM

Both the standard and our version of the LM scheme will
rely on a least squares expression for J′AML. Let r(θ) =

[r1(θ), . . . , rN(θ)]T, where

rn(θ) =

θTAnθ

θ
TBnθ


1/2
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for each n = 1, . . . ,N. Then the function JAML can be written
in least squares form as

JAML(θ) = r(θ)Tr(θ) = ‖r(θ)‖2.

Similarly, the companion function J′AML can be expressed as

J′AML(η) = ‖r′(η)‖2,

where r′(η) = [r′1(η), . . . , r′N(η)]T with r′n(η) = rn(π(η)) for
each n = 1, . . . ,N.

A full description of any variant of the LM scheme re-
quires an explicit form of the Jacobian matrix of r′(η). A
straightforward computation shows that the Jacobian matrix
of r(θ),

∂θr(θ) = [(∂θr1(θ))T
, . . . , (∂θrN(θ))T]T

,

is fully determined by the relations

(∂θrn(θ))T
= r−1

n (θ)Xn(θ)θ,

Xn(θ) =
An

θ
TBnθ

−
θ

TAnθ

(θTBnθ)2 Bn

for all n = 1, . . . ,N. For each m = 1, 2, . . ., denote by Im

the m × m identity matrix. Let P⊥θ be the symmetric ma-
trix representing the projection along θ onto the orthogonal
complement of θ, given by

P⊥θ = I6 − ‖θ‖
−2
θθ

T
. (4.4)

Then the Jacobian matrix of r′(η) can be expressed as

∂ηr′(η) = ∂θr(π(η)) ∂ηπ(η),

where

∂ηπ(η) = ‖κ(η)‖−1P⊥κ(η)∂ηκ(η)

and

∂ηκ(η) =



0 0 0 0 0
2 0 0 0 0

2p −2q−3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

We can now summarise the standard LM algorithm for
optimising J′AML as follows. Starting with an initial estimate
η0, the scheme iteratively replaces a current estimate ηk with
a new estimate ηk+1 based on the update rule

ηk+1 = ηk + δηk, (4.5)

δηk = −
(
(∂ηr′(ηk))T

∂ηr′(ηk) + λkI5
)−1(∂ηr′(ηk))Tr′(ηk).

(4.6)

Here λk is a non-negative scalar that dynamically changes
from step to step. Details concerning the choice of λk can be
found in [47]; see also Section 9.

4.2.3 Modified Form of LM

Experiments show that the standard form of the LM scheme
applied to J′AML can sometimes take relatively many itera-
tions before reaching an optimal solution. To achieve a faster
convergence, we shall modify the LM algorithm, replacing
the standard weight matrix λI5 in (4.6) by a non-standard,
step-dependent, positive-definite weight matrix λWη . The
customised scheme retains the logic of the standard scheme
in that for large values of the scale factor λ, the LM step
will align with a descent direction for J′AML, which is the di-
rection of −(λWη)−1(∂ηr′(ηk))Tr′(ηk). This direction is no
longer the direction of the steepest descent in the ordinary
Euclidean norm on the parameter space, but rather in the
norm |||ζ ||| = (ζTWηζ)1/2 [43, Sect. 8.2.2]. For precedents on
the use of weight matrices in LM different from multiples of
the identity matrix, see [5,44]. Passing to the specifics of our
scheme, we shall adopt

Wη = (∂ηπ(η))T
∂ηπ(η), (4.7)

with the main ingredient of update rule then becoming

δηk = −
(
(∂ηr′(ηk))T

∂ηr′(ηk) + λkWηk

)−1(∂ηr′(ηk))Tr′(ηk).

(4.8)

The motivation behind this choice of the weight matrix has
to do with the experimentally observed fact that the LM al-
gorithm for optimising the non-parametrised function JAML
(which produces conics, but not necessarily ellipses, as op-
timal solutions), based on the rule

θk+1 = θk + δθk, (4.9)

δθk = −
(
(∂θr(θk))T

∂θr(θk) + λkI6
)−1(∂θr(θk))Tr(θk),

(4.10)

runs faster than the standard LM algorithm for optimising
J′AML (as per (4.5) and (4.6)). One might hope then that if
Wη is chosen in such a way that the increment

δη = −
(
(∂ηr′)T

∂ηr′ + λWη

)−1(∂ηr′)Tr′

transformed into an increment of θ by means of the relation

δθ = ∂ηπ δη

becomes

δθ = −
(
(∂θr)T

∂θr + λI6
)−1(∂θr)Tr

and in so doing mimics the rule given in (4.10), then the LM
algorithm employing such δη will run faster than the stan-
dard version of LM. Of course, the above is just a guiding
principle whose merit has to be scrutinised experimentally.
Fortunately, relevant results confirm the efficacy of the pro-
posed approach—see Section 10.
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We now discuss how the above condition on Wη leads
to formula (4.7). The defining property of Wη is

∂ηπ((∂ηr′)T
∂ηr′ + λWη)−1(∂ηr′)Tr′ =(

(∂θr)T
∂θr + λI6

)−1(∂θr)Tr.

Here, of course, r′ and ∂ηr′ are evaluated at η, and r and ∂θr
are evaluated at π(η); in particular, r′ = r′(η) = r(π(η)) =

r. Taking into account that

∂ηπ((∂ηr′)T
∂ηr′ + λWη)−1(∂ηr′)Tr′ =

∂ηπ((∂ηr′)T
∂ηr′ + λWη)−1(∂ηπ)T(∂θr)Tr′,

we see that Wη has to satisfy

∂ηπ((∂ηr′)T
∂ηr′ + λWη)−1(∂ηπ)T

= ((∂θr)T
∂θr + λI6)−1

.

(4.11)

For a given matrix A, denote by A+ the Moore–Penrose
pseudo-inverse of A [35]. It is easily seen that

(∂ηπ)+
= ((∂ηπ)T

∂ηπ)−1(∂ηπ)T
, (4.12a)

((∂ηπ)T)+
= ∂ηπ((∂ηπ)T

∂ηπ)−1
. (4.12b)

Hence, in particular,

(∂ηπ)+
∂ηπ = I5, (4.13a)

(∂ηπ)T((∂ηπ)T)+
= I5. (4.13b)

Pre-multiplying and post-multiplying both sides of (4.11)
by (∂ηπ)+ and ((∂ηπ)T)+

, respectively, and invoking (4.13a)
and (4.13b), we get

((∂ηr′)T
∂ηr′+λWη)−1

= (∂ηπ)+((∂θr)T
∂θr+λI6)−1((∂ηπ)T)+

.

Now the critical ingredient of our argument is the equality

(∂ηπ)+((∂θr)T
∂θr + λI6)−1((∂ηπ)T)+

=(
(∂ηπ)T((∂θr)T

∂θr + λI6)∂ηπ
)−1
. (4.14)

We defer the rather lengthy proof of this equality to Ap-
pendix A. Assuming (4.14) for now, we find that

((∂ηr′)T
∂ηr′ + λWη)−1

=
(
(∂ηπ)T((∂θr)T

∂θr + λI6)∂ηπ
)−1

and further

(∂ηr′)T
∂ηr′ + λWη = (∂ηπ)T((∂θr)T

∂θr + λI6)∂ηπ

= (∂ηr′)T
∂ηr′ + λ(∂ηπ)T

∂ηπ.

Hence, immediately, Wη = (∂ηπ)T
∂ηπ, as desired.

5 Two Forms of Estimate Covariances

To be truly useful, an estimate of an ellipse must be accom-
panied by a reliable measure of its uncertainty character-
ising the dispersion of values that the estimate could rea-
sonably attain. A fundamental advantage of the AML cost
function over the ML cost function is that the former allows
one to obtain, in a relatively straightforward way, a quan-
titative measure of uncertainty for any estimate related to
that function. The measure takes the form of a covariance
matrix. Here we present two closely related expressions for
the covariance matrix of an AML estimate of an ellipse. The
first of these concerns the case that the estimate is expressed
in terms of the familiar algebraic parameters θ. The second
concerns the case that the estimate is represented via the nat-
ural geometric parameters of an ellipse, namely centre co-
ordinates, semi-major and semi-minor axes, and orientation.

5.1 Covariance of the Algebraically Parametrised Estimate

Any effort to assess the uncertainty of an estimate like θ̂AML
has to involve assumptions as to the nature of noise in the
data. The assumption behind the formula for the covariance
matrix of θ̂AML, Λ

θ̂AML
, is the same as that underlying the

development of JAML, namely that the observed data points
x1, . . . , xN are noisy versions of noise-free data points, with
the noise in each xn independent and Gaussian, of zero mean
and covariance matrix Λxn

.
Given an m × m matrix A and a positive integer r no

greater than m, we denote by Ar the r-truncated SVD of
A and by A+

r the r-truncated pseudo-inverse of A. These
are defined as follows. If A = UDVT is the singular value
decomposition (SVD) of A, with D = diag(d1, . . . , dm),
then Ar = UDrV

T with Dr = diag(d1, . . . , dr, 0, . . . , 0), and
A+

r = VD+

r UT with D+

r = diag(d+

1 , . . . , d
+

r , 0, . . . , 0), where
d+

i = d−1
i when di , 0 and d+

i = 0 otherwise. Continuing
with the preparations, we introduce the matrix

Mθ =

N∑
n=1

An

θ
TBnθ

. (5.1)

We are now ready to present our first covariance matrix
formula. Under the assumption that θ̂AML is normalised,
‖θ̂AML‖ = 1, the covariance matrix of θ̂AML is given by

Λ
θ̂AML

= P⊥
θ̂AML

(Mθ̂AML
)+

5 P⊥
θ̂AML

. (5.2)

We remark that the presence of P⊥
θ̂AML

here makes the matrix

Λ
θ̂AML

singular, with θ̂AML in the null space of Λ
θ̂AML

. This
reflects the particular way in which the scale ambiguity of
the estimates has been eliminated, namely by scaling the es-
timates to unit length. The details of the derivation of (5.2)
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are somewhat technical and are deferred to Appendix B. For
additional results related to the content of Appendix B, the
interested reader is referred to [18] and [31].

5.2 Covariance of the Geometrically Parametrised Estimate

Alongside a θ-vector of algebraic parameters, an ellipse
can be represented by a ξ-vector of geometric parameters,
ξ = [A, B,H,K, τ]T

. Here A and B denote the semi-major
axis and the semi-minor axis of the ellipse, H and K denote
the x and y coordinates of the centre of the ellipse, and τ is
the angle formed by the major axis with the positive x-axis.
Recalling that ∆ denotes the discriminant (∆ = b2

−4ac), we
let

λ
±

=
1
2

(
a + c ∓

(
b2

+ (a − c)2)1/2)
,

ψ = bde − ae2
− b2 f + c(4a f − d2),

V± =

(
ψ

λ
±
∆

)1/2

,

where ± and ∓ are shorthand for + or − that allow presen-
tation of two expressions in one formula, with the upper −
of ∓ associated with the + of ±. It is a matter of a straight-
forward but tedious analysis to establish the following con-
version rules for passing from the θ-based to the ξ-based
description of the ellipse (see [62, Sect. 4.10.2] for the start-
ing point of the derivation of the formulae):

A = max(V+
,V−), B = min(V+

,V−), (5.3)

H =
2cd − be

∆
, K =

2ae − bd
∆

, (5.4)

τ =



1
2 arccot

(
a−c

b

)
if b < 0, a < c and V+

≥ V−,
π
4 if b < 0, a = c and V+

≥ V−,
1
2 arccot

(
a−c

b

)
+ π

2 if b < 0, a > c and V+
≥ V−,

0 if b = 0, a < c and V+
≥ V−,

π
2 if b = 0, a ≥ c and V+

≥ V−,
1
2 arccot

(
a−c

b

)
+ π if b > 0, a < c and V+

≥ V−,
3π
4 if b > 0, a = c and V+

≥ V−,
1
2 arccot

(
a−c

b

)
+ π

2 if b > 0, a > c and V+
≥ V−,

1
2 arccot

(
a−c

b

)
+ π

2 if b < 0, a < c and V+
< V−,

3π
4 if b < 0, a = c and V+

< V−,
1
2 arccot

(
a−c

b

)
+ π if b < 0, a > c and V+

< V−,
π
2 if b = 0, a < c and V+

< V−,

0 if b = 0, a ≥ c and V+
< V−,

1
2 arccot

(
a−c

b

)
+ π

2 if b > 0, a < c and V+
< V−,

π
4 if b > 0, a = c and V+

< V−,
1
2 arccot

(
a−c

b

)
if b > 0, a > c and V+

< V−.
(5.5)

We remark that the formula for τ is valid only under the
assumption that the ellipse is not a circle; that is, provided
the inequality (a − c)2

+ b2
> 0 holds.

With the aid of (5.3)–(5.5), the geometric content of
θ̂AML can be revealed as ξ(θ̂AML). We term ξ(θ̂AML) the
AML estimate of the geometric parameters of an ellipse and
denote it by ξ̂AML. For consistency, we shall refer to θ̂AML as
the AML estimate of the algebraic parameters of an ellipse.
The rule of covariance propagation readily permits finding
the covariance matrix of the AML estimate of the geometric
parameters of an ellipse from the covariance matrix of the
AML estimate of the algebraic parameters. Assuming that
θ̂AML is normed to unity, we have

Λ
ξ̂AML

= [∂θξ]θ=θ̂AML
Λ

θ̂AML
[(∂θξ)]T

θ=θ̂AML
, (5.6)

The 5×6 Jacobian matrix ∂θξ = [∂θAT
, ∂θBT

, ∂θHT
, ∂θKT

, ∂θτ
T]T

can be specified explicitly as follows. The first two rows are
given by

∂θA =

∂θV+ if A = V+,
∂θV− if A = V−,

(5.7)

∂θB =

∂θV+ if B = V+,
∂θV− if B = V−,

(5.8)

where ∂θV± = [∂aV±, ∂bV±, ∂cV±, ∂dV±, ∂eV±, ∂ f V
±] is

given by

∂aV± =
1

2λ
±
∆

(
ψ

λ
±
∆

)−1/2
4c f − e2

+ 4∆−1cψ

−
ψ

2λ
±

1 ± c − a(
(a − c)2

+ b2)1/2


 ,

(5.9)

∂bV± =
1

2λ
±
∆

(
ψ

λ
±
∆

)−1/2
de − 2b f − 2∆−1bψ

±
bψ

2λ
±

(
(a − c)2

+ b2)1/2

 ,
(5.10)

∂cV± =
1

2λ
±
∆

(
ψ

λ
±
∆

)−1/2
4a f − d2

+ 4∆−1aψ

−
ψ

2λ
±

1 ± a − c(
(a − c)2

+ b2)1/2


 ,

(5.11)

∂dV± =

(
ψ

λ
±
∆

)1/2 be − 2cd
2ψ

, (5.12)

∂eV± =

(
ψ

λ
±
∆

)1/2 bd − 2ae
2ψ

, (5.13)
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∂ f V
±

= −
1

2λ
±

(
ψ

λ
±
∆

)−1/2

. (5.14)

The remaining three rows are given by

∂θH =

4c(2cd − be)

∆
2 ,

b2e + 4ace − 4bcd

∆
2 ,

2b(bd − 2ae)

∆
2 ,

2c
∆
,−

b
∆
, 0

]
,

(5.15)

∂θK =

2b(be − 2cd)

∆
2 ,

b2d + 4acd − 4abe

∆
2 ,

4a(2ae − bd)

∆
2 ,−

b
∆
,

2a
∆
, 0

]
,

(5.16)

∂θτ =

− b

2
(
b2

+ (a − c)2) , a − c

2
(
b2

+ (a − c)2) ,
b

2
(
b2

+ (a − c)2) , 0, 0, 0
 .

(5.17)

6 Confidence Regions

The reliability of an AML estimate of an ellipse can be sug-
gestively expressed using the concept of a confidence re-
gion. It is standard to build a confidence region of a param-
eter vector estimate as a portion of the parameter space that
contains the true parameter vector with a given high prob-
ability. The parameter space for all ellipses is five dimen-
sional and as such is difficult to grasp. Here we propose a
more visually appealing form of ellipse-specific confidence
region, namely a confidence region in the plane. Such a re-
gion is meant to cover the in-plane locus of the true ellipse
with a given high probability.

The probability statement associated with a confidence
region requires some explanation if it is not to be misinter-
preted. The point is that the statement is not meant to im-
ply that every confidence region contains the true parameters
with a specified high probability. Rather, the probability ex-
presses how frequently a confidence region can be expected
to contain the true parameters in the long-run process of tak-
ing random data points and obtaining regions.

The first to consider planar confidence regions for ellipse
fits was Porrill [46]. Our approach is inspired by Scheffé’s S -
method for constructing simultaneous confidence bands for
linear regression [51], [34, Sect. 9.4–5]. The starting point
for the construction is the observation that when θ̂AML is
viewed as a multivariate normally distributed random vector,

θ̂AML ∼ N(θ
∗
,Λθ

∗

),

where θ
∗

is the parameter vector of the true ellipse and Λθ
∗

is a covariance matrix, the scalar random variable θ̂T
AMLu(x)

is normally distributed with variance u(x)T
Λθ

∗

u(x) for every

point x on the locus Eθ
∗

= {x ∈ R2
| θ

T
∗

u(x) = 0} of the true

ellipse. The observation is based on the fact that θ̂T
AMLu(x) =

(θ̂AML − θ
∗
)T u(x) whenever x ∈ Eθ

∗

and the fact that by

the rule of covariance propagation (θ̂AML − θ
∗
)T u(x) has

variance u(x)T
Λθ

∗

u(x). Consequently, under the assumption

that θ̂AML is an unbiased estimate of θ
∗

1,

zx =
(θ̂T

AMLu(x))2

u(x)T
Λθ

∗

u(x)

is a squared normal random variable for every x ∈ Eθ
∗

. Each
zx, insofar as x belongs to Eθ

∗

, attains large values with less
probability than small values, with the probability of any
particular set of values regarded as large or small being in-
dependent of x. This suggests using the zx as building blocks
in the construction of a confidence region in the plane. Since
the covariance Λθ

∗

is unknown, the zx do not have observ-
able realisations and, for the sake of construction, have to be
replaced with these variables’ observable variants

ẑx =
(θ̂T

AMLu(x))2

u(x)T
Λ

θ̂AML
u(x)

, (6.1)

where the covariance estimate Λ
θ̂AML

serves as a natural re-
placement for Λθ

∗

. Again, large observed values of ẑx are
less plausible than small observed values as long as x ∈ Eθ

∗

.

It is thus natural to consider confidence regions for θ̂AML in
the form{

x ∈ R2
∣∣∣∣ ẑx ≤ c

}
,

where c is a positive constant. Ideally, for a confidence re-
gion at (confidence) level 1 − α, we should choose c such
that

P
(
zx ≤ c for all x ∈ Eθ

∗

)
= P

 sup
x∈Eθ

∗

zx ≤ c

 = 1 − α,

where P(A) denotes the probability of the event A. But the
distribution of supx∈Eθ

∗

zx is not easy to determine, so as a

second best choice we shall replace supx∈Eθ
∗

zx by a ran-

dom upper bound whose distribution can be readily calcu-
lated. Proceeding to the specifics, we may assume, in line
with fact that the parameter space of all ellipses is five-
dimensional, that (θ̂AML − θ

∗
)T
θ
∗

= 0, or equivalently,
θ̂AML − θ∗ = P⊥θ

∗

(θ̂AML − θ∗). This then leads to

P⊥θ
∗

Λθ
∗

= Λθ
∗

P⊥θ
∗

= Λθ
∗

. (6.2)

1 This is a realistic assumption, as θ̂AML is known to be an unbiased
estimate of θ∗ up to the first order. See [26], [27, Sect. 10.2.2], and [37]
for more details.
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Now, if x ∈ Eθ
∗

, then

θ̂
T
AMLu(x) = (θ̂AML − θ∗)

Tu(x) = (θ̂AML − θ∗)
TP⊥θ

∗

u(x).

But it follows from (6.2) that (Λ+

θ
∗

)1/2
Λ

1/2
θ
∗

= P⊥θ
∗

, so

θ̂
T
AMLu(x) = (θ̂AML − θ∗)

T(Λ+

θ
∗

)1/2
Λ

1/2
θ
∗

u(x)

= ((Λ+

θ
∗

)1/2(θ̂AML − θ∗))
T
Λ

1/2
θ
∗

u(x).

By the Cauchy–Bunyakovsky–Schwarz inequality,

(θ̂T
AMLu(x))2

≤ ‖(Λ+

θ
∗

)1/2(θ̂AML − θ∗)‖
2
‖Λ

1/2
θ
∗

u(x)‖2.

Also

‖(Λ+

θ
∗

)1/2(θ̂AML − θ∗)‖
2

= (θ̂AML − θ∗)
T
Λ

+

θ
∗

(θ̂AML − θ∗)

and

‖Λ
1/2
θ
∗

u(x)‖2 = u(x)T
Λθ

∗

u(x).

Hence

zx ≤ (θ̂AML − θ∗)
T
Λ

+

θ
∗

(θ̂AML − θ∗).

Since x is an arbitrary member of Eθ
∗

, we have

sup
x∈Eθ

∗

zx ≤ (θ̂AML − θ∗)
T
Λ

+

θ
∗

(θ̂AML − θ∗). (6.3)

Now the random variable (θ̂AML − θ
∗
)T
Λ

+

θ
∗

(θ̂AML − θ
∗
) has

approximately a chi-squared distribution with 5 degree of
freedom. Let χ2

5,α denote the 100(1 − α)% percentile of the

χ
2 distribution with 5 degrees of freedom, characterised by

the relation P
(
χ

2
≤ χ

2
5,α

)
= 1−α. Inequality (6.3) guarantees

that

P

 sup
x∈Eθ

∗

zx ≤ χ
2
5,α

 ≥ 1 − α

Substituting Λ
θ̂AML

for Λθ
∗

, we also approximately have

P

 sup
x∈Eθ

∗

ẑx ≤ χ
2
5,α

 ≥ 1 − α.

This allows an approximate confidence region at level 1 − α
for θ̂AML to be taken as

Ωα =
{

x ∈ R2
∣∣∣∣ ẑx ≤ χ

2
5,α

}
. (6.4)

We finally point out that if α is set to the standard con-
ventional value of 0.05, then χ2

5,α = 11.07.

7 Data Normalisation

For reason of numerical stability, it is important to incor-
porate data normalisation, or pre-conditioning, in the pro-
cess of calculating AML estimates and their covariances.
One popular form of data normalisation is due to Hartley
[12, 14, 23] and can be formulated with the aid of a data-
dependent 3 × 3 matrix T given by

T =


s−1 0 −s−1m1

0 s−1
−s−1m2

0 0 1

 ,
where

mi =
1
N

N∑
n=1

mn,i (i = 1, 2)

and

s =

 1
2N

N∑
n=1

(mn,1 − m1)2
+ (mn,2 − m2)2

1/2

.

If m = [m1,m2, 1]T represents a data point in the original,
un-normalised coordinates, then m̃ = [m̃1, m̃2, 1]T defined
by m̃ = Tm represents the same point in the normalised
coordinates. The form of T reflects the fact that the transfor-
mation m 7→ m̃ scales down the data set to a unit box with
centre at the origin. In the normalised coordinates, equa-
tion (2.2) can be equivalently written as θ̃

Tu(x̃) = 0 with
x̃ = [m̃1, m̃2]T and θ̃ related to θ via the relation

θ̃ = E−1P(34)D
+

3 (T ⊗ T)−TD3P(34)Eθ. (7.1)

Here, D3 is the 9 × 6 duplication matrix given by

D3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

P(34) is the permutation matrix for interchanging the 3rd and
4th entries of length-6 vectors, given by

P(34) = diag(0, 1, 0) ⊗
[
0 1
1 0

]
+ diag(1, 0, 1) ⊗

[
1 0
0 1

]
,

and E = diag(1, 2−1
, 1, 2−1

, 2−1
, 1). The computation of

θ̂AML involving data normalisation proceeds in two steps.



10 Z. L. Szpak et al.

First, an AML estimate of θ̃ relative to the normalised co-
ordinates, ̂̃θAML, is extracted by minimising the AML cost
function

J̃AML(θ̃) =

N∑
n=1

θ̃
TÃnθ̃

θ̃
TB̃nθ̃

where, for each n = 1, . . . ,N, Ãn = u(x̃n)u(x̃n)T
, B̃n =

∂xu(x̃n)Λx̃n
∂x̃u(x̃n)T

, and Λx̃n
is the result of the propagation

of Λxn
to the normalised coordinates, namelyΛx̃n

0
0T 0

 = T
Λxn

0
0T 0

 TT
.

Next, θ̂AML is obtained by the un-normalisation procedure
captured in the formula

θ̂AML = E−1P(34)D
+

3 (T ⊗ T)TD3P(34)E
̂̃θAML. (7.2)

This formula is an instance of the inverse equation to (7.1)
and is an immediate consequence of the identity JAML(θ) =

J̃AML(θ̃). Notice that θ̂AML given in (7.2) does not necessar-
ily have unit length.

The computation of Λ
θ̂AML

involving data normalisation
starts with the computation of Λ̂̃θAML

which is nothing else

but an application of (5.2) with P⊥̂̃θAML
substituted for P⊥

θ̂AML

and M̂̃θAML
substituted for Mθ̂AML

, where, of course,

M̂̃θAML
=

N∑
n=1

Ãn̂̃θT

AMLB̃n
̂̃θAML

.

Here ̂̃θAML is assumed to be of unit length. Once Λ̂̃θAML
is

found, Λ
θ̂AML

is given by

Λ
θ̂AML

= ‖θ̂AML‖
−2P⊥

θ̂AML
FΛ̂̃θAML

FTP⊥
θ̂AML

, (7.3)

where F is short for E−1P(34)D
+

3 (T ⊗ T)TD3P(34)E and θ̂AML

on the right-hand side is given by (7.2)—that is, θ̂AML =

F̂̃θAML. The above expression for Λ
θ̂AML

is the result of an
application of the rule of covariance propagation to Λ̂̃θAML

and the mapping θ̃ 7→ Fθ̃/‖Fθ̃‖.
Similarly, the data normalisation based computation of

Λ
ξ̂AML

starts with the computation of Λ̂̃θAML
. The matrix

Λ̂̃ξAML
is next retrieved by applying the formula

Λ̂̃ξAML
= [∂θ̃ξ̃]

θ̃=̂̃θAML
Λ̂̃θAML

[(∂θ̃ξ̃)]T

θ̃=̂̃θAML
,

which is a variant of (5.2) relative to the normalised coordi-
nates. Finally, Λ

ξ̂AML
is given by the expression

Λ
ξ̂AML

= SΛ̂̃ξAML
ST
, S = diag(s, s, s, s, 1),

which encodes the covariance propagation for geometric pa-
rameters from the normalised to the un-normalised coordi-
nates.

The procedures described above involve an arbitrary set
of covariance matrices Λxn

. A common assumption in prac-
tice is that the noise in the data set is homogeneous isotropic
Gaussian, so that Λxn

= σ
2I2 for each n = 1, . . . ,N, where

σ is a common standard deviation. The value of σ is gener-
ally not known a priori. This value can, however, be learned
from the data. The key is the fact that two variants of JAML,
one based on the covariances Λxn

= σ
2I2 and one based

on the covariances Λxn
= I2, differ only by a multiplicative

constant and, as a result, lead to a common value of θ̂AML.
In other words, θ̂AML can be obtained without knowing the
actual value of σ, by minimising JAML under the default as-
sumption that Λxn

= I2. Once this is done, one can take

σ̂ =

√
JAML(θ̂AML)

N − 5

for an estimate of σ (cf. [27, Sect. 7.1.4]). For all practical
purposes, σ may safely be identified with σ̂. With this in
effect, the Λxn

may be assumed to be fully known.

8 Normalised Confidence Regions

Data normalisation can also be used in forming confidence
regions. To generate a confidence region based on nor-
malised data, we first define

ˆ̃zx̃ =
(̂θ̃

T

AMLũ(x̃))2

ũ(x̃)T
Λ̂̃θAML

ũ(x̃)
,

where ̂̃θAML is assumed to have unit norm. We then let

∆̃α =
{

x̃ ∈ R2
∣∣∣∣ ˆ̃zx̃ ≤ χ

2
5,α

}
and finally take

∆α =
{

x ∈ R2
∣∣∣∣ x̃ ∈ ∆̃α

}
for an approximate confidence region at level 1−α for θ̂AML.
Equivalently, ∆α can be defined as

∆α =
{

x ∈ R2
∣∣∣∣ ẑx ≤ χ

2
5,α

}
provided that ẑx is taken with θ̂AML = F̂̃θAML and Λ

θ̂AML
=

FΛ̂̃θAML
FT
,
2 with ̂̃θAML remaining normalised; this follows

2 This is a genuine formula for the covariance matrix of θ̂AML cor-
responding a different gauge constraint than the one underlying for-
mula (7.3), which is the constraint that θ̂AML be scaled to unit norm.
Gauge constraints serve to eliminate redundant degrees of freedom in
the parametrisation and lead to gauged covariances. See [57, Sect. 9]
for more details.
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from the fact that with θ̂AML and Λ
θ̂AML

as above, we have

ẑx = ˆ̃zx̃. Now, as a rule, the set ∆α will be different from
the set Ωα, specified in (6.4), representing an approximate
confidence region at level 1 − α for θ̂AML based on raw
data. While typically the difference between confidence re-
gions constructed using normalised versus raw data is rather
small, normalised confidence regions tend to be more visu-
ally pleasing.

9 Algorithms

Our overall optimisation scheme is summarised in Algo-
rithms 1 and 2. Algorithms 3 and 4 give standalone pro-
cedures for computing the covariances of the algebraic and
geometric parameters of an ellipse estimate obtained by ap-
plying our scheme. It should be noted that an integral part
of Algorithm 1 are conditions for operation termination. We
shall elaborate on these conditions in Section 10.2.3 while
discussing details of our implementation of Algorithm 1.

10 Performance Analysis

In order to characterise the accuracy and computational effi-
ciency of our method, we conducted numerous simulations
under diverse experimental conditions. We manipulated the
eccentricity of ellipses, the number of data points sampled
from ellipses, the level of noise that was applied to data
points, as well as the length of ellipse segments from which
data points were generated. Taking into account the length
of ellipse segments allowed us to determine how an ellipse
estimate is influenced by the proportion of the length of an
ellipse segment to the length of the entire underlying el-
lipse. Based on experiments with changing this proportion,
we learned to distinguish between ill-posed and well-posed
ellipse fitting problems. We now consider an ellipse fitting
problem as ill-posed when the length of a segment of an el-
lipse is less than half of the ellipse’s perimeter, and as well-
posed when the length of a segment of an ellipse is greater
than half of the ellipse’s perimeter.

In evaluating the quality of ellipse estimates, we dis-
tinguished between training data and testing data. Training
data consists of noise perturbed points sampled from an el-
lipse possibly reduced to a small fragment. In contrast, test-
ing data consists of noiseless data points uniformly sampled
from an entire ellipse. Any particular ellipse in our exper-
iments was estimated using training data, and the ellipse’s
estimates were evaluated using corresponding testing data.
By distinguishing between training data and testing data,
we were explicitly interpreting ellipse fitting as a prediction
problem. This means that we were not interested in finding
the best ellipse that fits a given training data per se, but ex-
pected the estimated ellipse to be representative of the true

ellipse in all regions, not just in the region from which the
training data was sampled.

10.1 Procedure for Generating Synthetic Data and
Evaluating Ellipse Estimates

We now summarise the procedure for generating training
data and testing data, and explain in more detail how the
quality of ellipse estimates was characterised.

10.1.1 Data Generation

The first step of the data generation procedure is to deter-
mine an ellipse in standard form x2

/a2
+y

2
/b2

= 1 by choos-
ing first a random value of a in the interval (101, 200) and
next a random value of b in the interval (100, a). Such a
choice ensures that the inequality a > b holds and, conse-
quently, that a is the length of the semi-major axis and b is
the length of the semi-minor axis of the ellipse in question.

Once an initial ellipse has been selected, training and
testing data-sets are constructed using the following steps:

1. Sample K points equidistantly along a segment of the
ellipse with a specified length. The length of the segment
is a fraction of the ellipse perimeter, and is measured
clockwise starting from the positive y-axis. For example,
the segment length can be half of the ellipse perimeter
(see Figure 1a). The K points will serve as a basis for
the training data.

2. Sample N points equidistantly along the entire perimeter
of the ellipse. These N points will serve as a basis for the
testing data.

3. Rotate and translate the ellipse together with the points
generated in the first two steps by a random angle and
random offset (see Figure 1d).

4. Add zero-mean Gaussian noise with desired standard de-
viation to the rotated K points (see Figure 1e). Take these
noise-perturbed data points as the training data (serving
as input to the ellipse estimation methods).

5. Take the rotated set of N points as the testing data.

10.1.2 Estimates Evaluation

After an ellipse has been estimated on the training data with
any particular estimation method, the quality of the respec-
tive estimate is evaluated on the testing data using the root-
mean-square (RMS) orthogonal distance√√√

1
2N

N∑
n=1

d2
n ,
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Algorithm 1: GuaranteedEllipseFit

Input: θ̂DIR, data points
Output: Ωk.η

/* a data structure Ω = {r′(η), ∂ηπ(η), ∂ηr′(η),H(η), costη ,η, ∆η , λ, ν, γ,η wasUpdated} is used to pass parameters between functions
*/

1 keep going← true; use pseudo-inverse← false; λ← 0.01; k ← 1; ν← 1.2; γ ← 15; Ω1.∆η ← [1, 1, 1, 1, 1] ; η ← c(θ̂DIR) (see
equation (4.3))

2 while keep going and k < maxIter do
3 Ωk.r

′(η)← [r′1(η), . . . , r′N+1(η)]T
/* residuals computed on data points */

4 Ωk.∂ηπ(η)← ∂ηπ(η) /* Jacobian of parameter transformation */

5 Ωk.∂ηr′(η)← ∂θr(π(η)) ∂ηπ(η) /* Jacobian matrix */

6 Ωk.H(η)← (∂ηr′(η))T∂ηr′(η) /* approximate halved Hessian matrix */

7 Ωk.costη ← r′(η)Tr′(η) /* current cost */

8 Ωk.η ← η /* current parameter estimate */

9 Ωk.λ← λ /* damping parameter */

10 Ωk.ν← ν /* damping parameter decrement */

11 Ωk.γ ← γ /* damping parameter increment */

12 Ωk.η wasUpdated← false /* indicates if η was modified or not */

13 Ωk+1 ← LevenbergMarquardtStep(Ωk)

14 if HasConverged(Ωk+1) then
15 keep going← false
16 k ← k + 1
17 end while
18 return Ωk.η

19 Procedure HasConverged(Ω)
20 θ = κ(Ω.η) /* convert from the η parametrisation to the θ parametrisation (see equation (4.1)) */

21 D =

∣∣∣∣∣∣∣∣
a b/2 d/2

b/2 c e/2
d/2 e/2 f

∣∣∣∣∣∣∣∣ /* compute determinant of the ellipse (note that θ = [a, b, c, d, e, f ]T ) */

22 F =

[
1 0
0 0

]
⊗

0 0 2
0 −1 0
2 0 0


23 if ‖Ωk+1.η − Ωk.η‖ < tolη and Ωk+1.η wasUpdated then
24 return true
25 else if |Ωk+1.costη − Ωk.costη | < tolcost and Ωk+1.η wasUpdated then
26 return true
27 else if ‖Ωk+1.∆η‖ < tol∆ and Ωk+1.η wasUpdated then
28 return true
29 else if ‖Ωk+1.∂ηr′(η)‖ < tol‖∂ηr′(η)‖ then
30 return true
31 else if log(‖θ‖2/θTFθ) < tollog(‖θ‖2/θTFθ) or |D| < tolD then
32 return true
33 else
34 return false

where dn denotes the orthogonal distance between the nth
data point and the ellipse constituting the estimate (see Fig-
ure 1f). The RMS orthogonal distance measures the ge-
ometric error of the estimate with respect to the testing
data points. The process of computing the orthogonal dis-
tances dn is rather involved—detailed formulae can be found
in [11] and [61].

10.2 Results

We compared our estimation technique with the orthogo-
nal distance regression method and the direct ellipse fitting

method, which represent the gold standard and the baseline
technique for ellipse fitting, respectively. Both the orthog-
onal distance regression method and our proposed method
were initialised with the result of the direct ellipse fit-
ting technique. All estimation schemes operated on Hartley-
normalised data points.

10.2.1 Synthetic Data

In the first set of simulations we held the noise level fixed
at σ = 5 pixels, and varied the number of training data
points and the length of ellipse segments from which the
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Algorithm 2: LevenbergMarquardtStep
Input: Ω
Output: Ω

/* compute two potential updates based on different weightings of the damping matrix */

1 Wη ← (Ω.∂ηπ(η))TΩ.∂ηπ(η)
2 ∆a ← [Ω.H(η) + Ω.λWη]−1(Ω.∂ηr(η))TΩ.r(η)
3 ηa ← Ω.η − ∆a

4 ∆b ← [Ω.H(η) + (Ω.ν)−1Ω.λWη]−1(Ω.∂ηr(η))TΩ.r(η)
5 ηb ← Ω.η − ∆b

/* compute new residuals and costs based on these updates */

6 costηa
← r′(ηa)Tr′(ηa)

7 costηb
← r′(ηb)Tr′(ηb)

/* determine appropriate damping and if possible select an update */

8 if costηa
≥ Ω.costη and costηb

≥ Ω.costη then
9 Ω.η wasUpdated← false /* neither potential update reduced the cost */

10 Ω.η ← Ω.η /* no change in parameters */

11 Ω.∆η ← Ω.∆η /* no change in step direction */

12 Ω.costη ← Ω.costη /* no change in cost */

13 Ω.λ← (Ω.λ)(Ω.γ) /* next iteration add more of the damping matrix */

14 else if costθb
< Ω.costθ then

15 Ω.η wasUpdated← true /* update ‘b’ reduced the cost function */

16 Ω.η ← ηb /* choose update ‘b’ */

17 Ω.∆η ← ∆b /* store the step direction */

18 Ω.costη ← costηb
/* store the current cost */

19 Ω.λ← (Ω.λ)(Ω.ν)−1
/* next iteration reduce the influence of the damping matrix */

20 else
21 Ω.η wasUpdated← true /* update ‘a’ reduced the cost function */

22 Ω.η ← ηa /* choose update ‘a’ */

23 Ω.∆η ← ∆a /* store the step direction */

24 Ω.costη ← costηa
/* store the current cost */

25 Ω.λ← Ω.λ /* keep the same damping for the next iteration */

/* return a data structure containing all the updates */

26 return Ω

Algorithm 3: AlgebraicParameterCovariance

Input: θ̂AML, {x1, . . . , xN }, {Λx1
, . . . ,ΛxN

}

Output: Λ
θ̂AML

1 P⊥
θ̂AML

← I6 − ‖θ̂AML‖
−2θ̂AMLθ̂

T
AML /* represents the projection along θ̂AML onto the orthogonal complement of θ̂AML */

2 Mθ̂AML
←

∑N
n=1

An

θ̂T
AMLBnθ̂AML

(An = u(xn)u(xn)T, Bn = ∂xu(xn)Λxn
∂xu(xn)T)

3 Λ
θ̂AML

← P⊥
θ̂AML

(Mθ̂AML
)+
5 P⊥

θ̂AML
/* refer to Section 5.1 for an explanation of how to compute (Mθ̂AML

)+
5 */

4 return Λ
θ̂AML

data points were sampled. For each combination of the num-
ber of data points and the length of an ellipse segment, we
conducted 250 simulation trials and recorded the mean root-
mean-square error. The mean-root-mean-square errors are
displayed using two-dimensional contour plots in Figure 2.

Two important conclusions can be drawn from the re-
sults of the first experiment:

1. When the length of an ellipse segment is less than half
of the length of the entire ellipse, the direct ellipse esti-

mate does not improve as the number of data points is
increased.

2. The Sampson distance based ellipse fitting method and
the orthogonal distance regression method yield almost
indistinguishable results.

In the second set of simulations we utilised only 25 data
points, but still varied the noise level and the length of el-
lipse segments from which data points were sampled. The
results of the second simulation are summarised using two-
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Algorithm 4: GeometricParameterCovariance

Input: θ̂AML, {x1, . . . , xN } and optionally {Λx1
, . . . ,ΛxN

}

Output: Λ
ξ̂AML

/* if the data point covariance matrices {Λx1
, . . . ,ΛxN

} are specified then skip steps 1 to 4 */

1 Λxn
← I2 ∀ n = 1, . . . ,N /* assume that covariance in data points is proportional to the identity matrix */

2 costθ̂AML
←

∑N
n=1

θ̂T
AMLAnθ̂AML

θ̂T
AMLBnθ̂AML

(An = u(xn)u(xn)T, Bn = ∂xu(xn)Λxn
∂xu(xn)T) /* AML cost associated with θ̂AML */

3 σ̂2
← (N − 5)−1costθ̂AML

/* estimate of noise level */

4 Λxn
← σ̂2Λxn

∀ n = 1, . . . ,N /* represents covariance of data points in original coordinate system */

/* transform θ̂AML, data points xn, and covariances Λxn
into a Hartley–normalised coordinate system for improved numerical stability */

5 ̂̃θAML = E−1P(34)D
+
3 (T ⊗ T)−TD3P(34)Eθ̂AML /* refer to Section 7 for the definition of matrices E, P(34), D3, and T */

6 x̃n = Txn ∀ n = 1, . . . ,N

7

[
Λx̃n

0
0T 0

]
← T

[
Λxn

0
0T 0

]
TT

∀ n = 1, . . . ,N

/* estimate covariance for the algebraic parametrisation in the Hartley–normalised coordinate system */

8 Λ̂̃θAML

← AlgebraicParameterCovariance(̂θ̃AML, {x̃1, . . . , x̃N }, {Λx̃1
, . . . ,Λx̃N

})

/* refer to eqs. (5.7) to (5.17) for the definition of ∂θ̃ ξ̃, with θ̃ substituted for θ and ξ̃ substituted for ξ */

9 Λ̂̃ξAML

← [∂θ̃ ξ̃]
θ̃=̂̃θAML

Λ̂̃θAML

[(∂θ̃ ξ̃)]T

θ̃=̂̃θAML

10 S← diag(s, s, s, s, 1) /* refer to Section 7 for the definition of the scalar s */

11 Λ
ξ̂AML

← SΛ̂̃ξAML

ST
/* transform geometric covariance matrix back to the original coordinate system */

12 return Λ
ξ̂AML

dimensional contour plots in Figure 3. The second experi-
ment confirms that our Sampson distance based ellipse fit-
ting method produces similar results to those of the gold
standard orthogonal distance regression method for a vari-
ety of noise levels. The second experiment also shows that
our Sampson distance based ellipse fitting imitates the or-
thogonal distance regression even when both the noise level
and the ellipse segment length are varied. The direct ellipse
fitting method does not share this desirable property, and in-
stead yields inferior results.

10.2.2 Stability and Efficiency

For every experiment, we verified that our algorithm was in-
deed producing an ellipse fit by confirming that the discrimi-
nant of the estimated parameters was less than zero. We also
monitored the average running time of a MATLAB imple-
mentation of our algorithm,3 while we varied the number
of data points as well as the fraction of the ellipse perime-
ter from which data points were sampled. A summary of our
findings together with a comparison against the running time
of the orthogonal distance regression method is presented
using two-dimensional density plots in Figure 4.

Based on the outcome of the experiment, we make the
following two observations:

3 http://sites.google.com/site/szpakz/

1. The running time of our fast guaranteed ellipse fitting al-
gorithm increases gradually and smoothly as the number
of data points is increased, and as the problem becomes
more ill-posed.

2. The running time of the orthogonal distance regression
method follows a similar trend, but does not increase
gradually nor smoothly.

Our experiments indicate that the running time of the or-
thogonal distance regression method is much more unpre-
dictable than the running time of our technique.

In Section 4.2 we mentioned that utilising the LM
method in standard form to optimise our cost function may
occasionally take many iterations to converge, and proposed
a modification to the LM scheme. A comparison of the run-
ning time of our fast guaranteed ellipse fitting algorithm
against the basic guaranteed ellipse fitting algorithm that
uses the standard LM method is presented in Figure 5. The
results show that for ill-posed ellipse fitting problems, our
fast guaranteed ellipse implementation is twice as fast as the
basic guaranteed ellipse fitting algorithm.

10.2.3 Attributes of the Estimate

While our ellipse specific parametrisation explicitly ex-
cludes hyperbola fits, it does permit degenerate ellipses or
ellipses that approach parabolas in the limit. As discussed in
Section 2, degenerate ellipses are those for which the cor-
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(a) Training data points are sampled from a
segment of an ellipse. In this example, the
length of the segment is half of the ellipse
perimeter.

(b) Testing data points are sampled equidis-
tantly from the entire ellipse.

(c) Training data is randomly rotated and
translated.

(d) The same rotation and translation is ap-
plied to testing data.

(e) Noise perturbed training data serves as
input to ellipse estimation methods.

(f) The quality of an estimated ellipse is
characterised in terms of the root-mean-
square orthogonal distance between the
testing data set and the estimated ellipse.
The orthogonal distance is depicted by
straight lines joining testing data points and
the corresponding closest points on the el-
lipse.

Fig. 1 Summary of the simulation procedure.

responding determinant D is zero. In turn, ellipses close to
parabolas are those for which the corresponding discrimi-
nant ∆ is close to zero. To avoid producing degenerate el-
lipses, our algorithm terminates when the absolute value of
the determinant of an ellipse falls below a user-specified
threshold. To prevent the solution from coming too close to
the parabolas, our algorithm stops when the discriminant ap-
proaches zero.

In our experiments the threshold for the determinant was
set to 10−5, and the discriminant was ensured to be large
enough in modulus by forcing the algorithm to terminate
when log(‖θ‖2/θTFθ) rose above a threshold of 15.5.

We label close to degenerate ellipses and ellipses that
approximate parabolas as depreciated ellipses. In contrast
to bona fide ellipses, depreciated ellipses are characterised
by the property that only a subset of geometric ellipse pa-
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(a) Direct ellipse estimation
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(b) Fast guaranteed ellipse estimation
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(c) Orthogonal distance estimation
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(d) Comparing all three methods

Fig. 2 Comparison of mean root-mean-square orthogonal distance error for a fixed noise level of σ = 5 pixels, as both the number of data points
and the portion from which the data points are sampled are varied. The colour intensity of the plot is correlated with the mean root-mean-square
orthogonal distance error—the lighter the colour, the larger the error. Contour lines represent level sets with constant error. When the fraction of
the ellipse from which data points are sampled is less than half of the ellipse perimeter, the error of the direct ellipse estimation (DIR) method fails
to improve as the number of data points is increased. In contrast, both our fast guaranteed ellipse estimation method (FGEE) and the gold standard
orthogonal distance estimation (ODE) method exhibit a consistent reduction in error as the number of data points is increased. Panel (d) may be
interpreted as comparing a sample of values on the “number of points” axis in panels (a), (b), and (c), while holding the corresponding “fraction
of ellipse perimeter” axis fixed at 0.55.

rameters are estimated with reasonable certainty. Although
not as informative as genuine ellipses, depreciated ellipses
still provide useful knowledge. For example, an ellipse that
approximates a parabola will have tremendous uncertainty
associated with its semi-major axis, but the semi-minor axis

and orientation of the axes may still be estimated with great
precision, and this will be reflected in the covariance matrix.

In order to determine how frequently depreciated el-
lipses occur in typical scenarios, we conducted numerous
simulations which are summarised in Table 1.
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(a) Direct ellipse estimation
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(b) Fast guaranteed ellipse estimation
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(c) Orthogonal distance estimation
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(d) Comparing all three methods

Fig. 3 Comparison of mean root-mean-square orthogonal distance error for 25 data points, as both the portion from which the data points are
sampled and the standard deviation of the noise level (measured in pixels) are varied. The colour intensity of the plot is correlated with the mean
root-mean-square orthogonal distance error—the lighter the colour, the larger the error. Contour lines represent level-sets with constant error. When
the fraction of the ellipse from which data points are sampled is less than half of the ellipse perimeter, the error of the direct ellipse estimation
method is considerably higher than that of the other methods. In contrast, our fast guaranteed ellipse estimation method and the gold standard
orthogonal distance estimation method exhibit similar error levels. Panel (d) may be interpreted as comparing a sample of values on the “number
of points” axis in panels (a), (b), and (c), while holding the corresponding “fraction of ellipse perimeter” axis fixed at 0.45

The results of our simulations are based on 10 000 trials.
For each trial an ellipse was generated by randomly select-
ing a length for the semi-major and semi-minor axes, while
keeping the axes aligned with the Cartesian axes. Points
were then sampled from the upper half, right half, and upper
right quarter of the ellipse. Our experiments revealed that

with small noise levels and with at least ten data points, de-
preciated ellipses occur on rare occasions. The most chal-
lenging situation arises when data points are sampled from
the upper right quarter of an ellipse and the noise level is
large. This constitutes a very ill-posed problem—neither
orthogonal distance regression nor approximate maximum



18 Z. L. Szpak et al.

200 400 600 800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Points

F
ra
ct
io
n
of
E
lli
ps
e
P
er
im
et
er

MeanRunning Time

0.1

0.2

0.3

0.4

0.5

6��6666������66666666066666666666666666664444444666666666662222222222244444444444446442222222222

(a) Fast guaranteed ellipse estimation
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(b) Orthogonal distance estimation
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(c) Orthogonal distance estimation
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(d) Fast guaranteed ellipse estimation vs orthogonal distance esti-
mation

Fig. 4 Comparison of mean running time for fixed noise level of σ = 5 pixels, as both the portion from which the data points are sampled and the
number of data points are varied. The running time is measured in seconds. The colour intensity of the plot is correlated with the average running
time—the lighter the colour, the greater the running time. In panels (a) and (b) the same colour scaling function was used to map running time to
colour, thereby ensuring that the two plots are directly comparable. According to panel (a), the average running time of the fast guaranteed ellipse
estimation method increases smoothly as the number of points is increased and as the fraction of the ellipse perimeter from which data points are
sampled is decreased. Whilst the running time of the orthogonal distance estimation method in panel (b) follows a similar trend, the trade-off is not
as smooth, indicating that the running time of the orthogonal distance estimation method for a sample of data points is much more unpredictable.
In panel (c) the irregularity of the running time of the orthogonal distance estimation method is made more prominent by a different choice of the
colour scaling function. Panel (d) may be interpreted as comparing a sample of values on the “fraction of ellipse perimeter” axis in panel (a) and
panel (b), while holding the corresponding “number of points” axis fixed at 350.
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(a) 25 data points sampled from the entire ellipse
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(b) 25 data points sampled from one third of the
ellipse

Fig. 5 Comparison of smoothed histograms of the number of seconds that elapsed before our algorithm that uses a modified damping matrix in the
LM optimisation scheme converged for (a) well-posed and (b) ill-posed problems, and of similar histograms for the basic guaranteed ellipse fitting
method that uses an identity damping matrix. The results indicate that the use of the modified damping matrix in the LM scheme can considerably
decrease the running time for ill-posed problems. On average, the modified damping matrix reduces the running time by half for ill-posed problems.
For well-posed problems, there is no notable difference in running time as both algorithms converge within a handful of iterations.

likelihood estimation are capable of producing an ellipse
that is close to a true ellipse without recourse to some kind
of regularisation. We believe that ill-posed estimation prob-
lems are best solved within a Bayesian setting, where reg-
ularisation is achieved through a suitable choice of a prior
distribution over the parameter space. The design of an ap-
propriate prior over the space of ellipses that might serve
to guide the estimate away from degenerate ellipses and
parabolas is a challenging problem which we intend to pur-
sue in future work.

10.2.4 Real Data

To validate the conclusions drawn from the synthetic ex-
periments, we also compared the ellipse fitting methods on
real images. In Figure 6, we utilised two images of a Mar-
tian moon eclipse captured by the Opportunity rover, and in
Figure 7, we used images of two of Saturn’s moons cap-
tured by the Cassini spacecraft. Our experiments confirm
that the estimates produced by our fast guaranteed ellipse
fitting method agree with the estimates obtained via the or-
thogonal distance regression.

10.2.5 Accuracy of Geometric Parameter Covariance
Estimation

We performed additional simulations to test the validity of
our geometric parameter covariance formulae. Our valida-
tion was based on comparing the covariance matrix given by
the propagation formula (5.6) to a covariance matrix result-
ing from a Monte Carlo simulation. In particular, we sam-
pled 250 points equidistantly between 0 and 225 degrees on
the ellipse parametrised by ξ = [100, 50, 250, 250, 0.7854]T.
We then added zero-mean Gaussian noise at a pre-set noise

level to the data points, and produced 10 000 simulation tri-
als. The Monte Carlo covariance matrix was computed with
the aid of the formula

Λ
ξ̂MONTE

=
1

9995

10000∑
n=1

(ξ̂AML,n − ξ̄AML)(ξ̂AML,n − ξ̄AML)T
,

where ξ̂AML,n is the geometric parameter estimate corre-
sponding to the nth trial and ξ̄AML represents the correspond-
ing mean geometric parameter vector. We then compared
the relative error between our propagated covariance ma-
trix and the Monte Carlo covariance matrix for each simula-
tion trial. The relative error is defined as the absolute error
between our propagated covariance matrix and the Monte
Carlo covariance matrix, divided by the Frobenius norm of
the Monte Carlo covariance matrix. The relative error is sen-
sitive to very small differences. We also computed the angu-
lar error defined as the angle between vectorised and unit-
normalised variants of the propagated covariance and Monte
Carlo covariance matrices. The angular error is invariant to
differences in scale between the two covariance matrices.
The median relative and median angular errors are presented
in Table 2 for various noise levels. The results show that our
covariance matrix estimates are very accurate, achieving a
relative error of less than 15%, provided that the noise level
is less than σ = 3 pixels.

To further illustrate the practical insight that can be
gleaned from the covariance matrices, we plot a 95% confi-
dence region and report the estimated geometric parameters
and corresponding parameter standard errors on four differ-
ent data-sets (see Figure 8). In accordance with theoretical
expectations, the true ellipses happened to fall inside the
confidence regions and the confidence regions became nar-
rower as the number of data points was increased. While the
results presented in Figure 8 are representative of the kinds
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Table 1 Prevalence of ellipses, depreciated ellipses, and hyperbolas when minimising AML using the conic parametrisation (θ) or the ellipse-
specific parametrisation (η). Results are based on 10 000 simulations with 10 data points and 10 000 simulations with 50 data points.

Parametrisation Conic type

Upper half of ellipse Right half of ellipse Quarter of ellipse

Noise level

σ = 1 σ = 5 σ = 1 σ = 5 σ = 1 σ = 5

(a) Results based on 10 000 simulations with 10 data points

η
Ellipse 100.0% 100.0% 100.0% 100.0% 96.61% 61.43%

Depreciated Ellipse 0.0% 0.0% 0.0% 0.0% 3.39% 38.57%

θ
Ellipse 100.0% 99.9% 100.0% 100.0% 95.92% 61.89%

Hyperbola 0.0% 0.1% 0.0% 0.0% 4.08% 38.11%

(b) Results based on 10 000 simulations with 50 data points

η
Ellipse 100.0% 100.0% 100.0% 100.0% 99.86% 74.44%

Depreciated Ellipse 0.0% 0.0% 0.0% 0.0% 0.14% 25.56%

θ
Ellipse 100.0% 100.0% 100.0% 100.0% 99.83% 72.23%

Hyperbola 0.0% 0.0% 0.0% 0.0% 0.17% 27.77%

DIR FGEE ODE

(a) Martian moon eclipse stage 1

DIR FGEE ODE

(b) Martian moon eclipse stage 2

Fig. 6 Comparison of ellipse fitting methods on two images of a Martian moon eclipse. The two images capture the Martian moon Phobos as it
occludes the sun. A Canny edge detector was applied to the two images, and the maximum edge response corresponding to the common border of
the moon and the sun was used as input to the ellipse fitting methods. In both cases the smallest ellipse corresponds to the direct ellipse fit, whilst
our fast guaranteed ellipse estimation method and the orthogonal distance estimation method yield indistinguishable results (the ellipse contours
overlap). Image Credit: NASA/JPL/Cornell.

DIR FGEE ODE

(a) Rhea

DIR FGEE ODE

(b) Mimas

Fig. 7 Comparison of ellipse fitting methods on Saturn’s crescent moons. A Canny edge detector was applied to the two images, and the maximum
edge response corresponding to the outer border of the crescents was used as input to the ellipse fitting methods. In both cases the smallest ellipse
corresponds to the direct ellipse fit, whilst our fast guaranteed ellipse estimation method and the orthogonal distance estimation method yield
indistinguishable results (the ellipse contours overlap) Image Credit: NASA/JPL/Space Science Institute.
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of confidence regions one would typically observe in many
practical scenarios, they may not be representative of confi-
dence regions arising when data points are sampled from a
very short fragment of an ellipse (an ill-posed problem)—
in that case the assumptions underlying the generation of
confidence regions may not be satisfied and the confidence
regions may thus be too narrow.

Table 2 Median errors between our propagated geometric parameter
covariance matrix and a Monte Carlo estimate of the geometric param-
eter covariance matrix. Results are based on 10 000 trials. The relative
error is sensitive to very small differences between the propagated co-
variance estimate and the Monte Carlo covariance estimate. The angu-
lar error is invariant to differences in scale between the two covariance
matrices. The results show that our covariance matrix estimates are
very accurate, achieving a relative error of less than 15% provided that
the noise level is less than σ = 3 pixels.

σ (pixels) relative error (percent) angular error (degrees)

1 6.8232 0.8348
2 9.3241 1.4280
3 15.3709 2.6416
4 21.7922 3.5146
5 34.0976 5.4763

11 Discussion

Our experiments show that the Sampson distance is an ex-
cellent approximation to the orthogonal distance for the pur-
pose of fitting an ellipse to data. Our results are in agree-
ment with the findings of Kanatani and Rangarajan who re-
port that “[it] has also been observed that the solution that
minimizes the Sampson error agrees with the ML [orthog-
onal distance] solution up to several significant digits.” [30,
p. 2204].

The utility of the Sampson distance was also acknowl-
edged by Rosin. This author conducted a comprehensive
comparison of various ellipse fitting cost functions and con-
cluded that “. . . for small amounts of noise EOF2 [the
Sampson distance] is the overall best approximation to use
. . .” [49, p. 501].

Some researchers, however, including Chernov and
Ma [10, p. 299], have cautioned against replacing the or-
thogonal distance estimate with the Sampson distance. Their
concerns are based on a list of disadvantages associated with
algebraic fitting methods,4 which was compiled by Anh [1].
The list includes the following items:

1. Error definition does not comply with the measurement
guidelines.

4 The Sampson distance based estimation technique is sometimes
classified as a geometric fitting method and sometimes as an algebraic
fitting method. Chernov and Ma as well as Anh regard the Sampson
distance optimisation as an algebraic fitting method.

2. Conversion of the algebraic parameters to the physical
parameters (shape, size, position, and rotation parame-
ters) is highly difficult.

3. Fitting errors are weighted.
4. The estimated model parameters are biased.
5. It is very difficult to test the reliability of the estimated

model parameters (particularly in terms of physical pa-
rameters).

6. The fitting procedure sometimes ends with an unin-
tended model feature (e.g. a hyperbola instead of an el-
lipse).

7. The model parameters are not invariant to coordinate
transformation (e.g. a parallel shift of the set of given
points causes changes not only in position, but also in
the form and rotation of the estimated model feature).

In the context of ellipse fitting, the disadvantages are not so
severe. We offer the following rejoinder to some of the above
criticisms (the numbers in brackets will refer to the original
item numbers):

[2]. The formulae for the conversion of algebraic ellipse pa-
rameters to physical ellipse parameters are straightfor-
ward, albeit tedious, to derive—see Section 5.2.

[3]. The fact that fitting errors are weighted is not neces-
sarily a disadvantage. It is through the introduction of
gradient-cum-covariance weights into the algebraic dis-
tance that the Sampson distance is able to produce accu-
rate estimates.

[4]. Bias in the estimated model parameters is not limited
to algebraic fitting methods. The orthogonal distance
estimate is also biased even in the case of ellipse fit-
ting [16, 38–41].

[5]. Our fitting procedure includes a reliability measure for
both algebraic and geometric ellipse parameters.

[6]. Our fitting procedure always produces an ellipse esti-
mate.

[7]. If data points and data point covariance matrices are
both jointly and appropriately modified in accordance
with a change of coordinate system, then the Samp-
son distance is theoretically unchanged. However, cer-
tain coordinate systems (e.g. scaling all data points to
lie within a unit box [14]) present favourable numerical
advantages.

Our response above reduces the list of disadvantages to item
(1). Now, passing to this remaining item, given that the
Sampson distance yields accurate estimates, does it really
matter that the error definition does not comply with mea-
surement guidelines? In our view, it does not, but we con-
cede that the answer may be domain dependent.

An astute reader would have probably noticed that the
Sampson distance was devised more than forty years ago,
and now may wonder whether the accuracy of the Samp-
son distance based estimation method has been surpassed by
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(a) 10 data points sampled from an ellipse centred at
(250, 250), with semi-major axis length of 200 pixels,
semi-minor axis length of 25 pixels, and orientation of
45 degrees. The data points were perturbed with zero-
mean homogeneous Gaussian noise of σ = 5 pixels.
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(b) 40 data points sampled from an ellipse centred at
(250, 250), with semi-major axis length of 200 pixels,
semi-minor axis length of 25 pixels, and orientation of
45 degrees. The data points were perturbed with zero-
mean homogeneous Gaussian noise of σ = 5 pixels.
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(c) 10 data points sampled from an ellipse centred at
(250, 250), with semi-major axis length of 200 pixels,
semi-minor axis length of 100 pixels, and orientation
of 135 degrees. The data points were perturbed with
zero-mean homogeneous Gaussian noise of σ = 5
pixels.
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(d) 40 data points sampled from an ellipse centred at
(250, 250), with semi-major axis length of 200 pixels,
semi-minor axis length of 100 pixels, and orientation
of 135 degrees. The data points were perturbed with
zero-mean homogeneous Gaussian noise of σ = 5
pixels.

Fig. 8 Fast guaranteed ellipse estimation with corresponding 95% confidence band (shaded region). (a) The estimated ellipse is centred at
(254.218 ± 3.176, 254.866 ± 3.580), with semi-major axis length of 199.347 ± 4.965 pixels, semi-minor axis length of 29.447 ± 1.683 pixels,
and orientation of 45.612 ± 0.549 degrees. (b) The estimated ellipse is centred at (245.330 ± 2.612, 250.868 ± 2.403), with semi-major axis length
of 200.105 ± 3.613 pixels, semi-minor axis length of 23.596 ± 1.327 pixels, and orientation of 44.035 ± 0.419 degrees. (c) The estimated ellipse is
centred at (245.316 ± 5.478, 236.282 ± 7.851), with semi-major axis length of 201.939 ± 3.629 pixels, semi-minor axis length of 110.769 ± 9.859
pixels, and orientation of 132.503±1.772 degrees. (d) The estimated ellipse is centred at (256.101±3.549, 256.386±3.490), with semi-major axis
length of 197.207 ± 1.719 pixels, semi-minor axis length of 88.211 ± 5.447 pixels, and orientation of 134.868 ± 0.782 degrees.

more recent techniques. To answer this question, a compre-
hensive evaluation of several new schemes was recently con-
ducted [55]. These schemes are not based on optimisation of
any particular cost function but rather exploit the idea of un-
biasing existing estimators. The results of the comparison
showed that whilst in some instances the newer techniques
may lead to more accurate estimates, the improvements they
yield are very small and can usually only be measured us-
ing several decimal places. Hence, in many situations, the
improvement in accuracy that may be gleaned by using one
of the more recently proposed techniques may not be prac-
tically useful.

12 Conclusion and Future Work

We have presented a straightforward and efficient algo-
rithm for fitting an ellipse to data. The method exploits a
parametrisation of the set of all ellipses to implicitly enforce
the ellipse constraint. Computational efficiency is accom-
plished with a custom variant of the Levenberg–Marquardt
algorithm. The technique yields estimates that are almost in-
distinguishable from the estimates produced by the gold-
standard orthogonal distance regression method, even at
moderate noise levels. The proposed method is easy to im-
plement, thanks to the reliance on the Sampson distance.
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Additionally, we have provided a means for plotting con-
fidence regions and a measure of uncertainty for both alge-
braic and geometric parameters of an ellipse estimate. This
measure of uncertainty may prove useful in various indus-
trial applications and may also help in low-level vision tasks
where deciding whether a group of pixels belong to a line,
circle, or ellipse is often a prerequisite for higher-level im-
age analysis. In future work we plan to investigate robust
variants of our cost function to neutralise the impact of out-
liers on the estimate, and plan to explore suitable priors over
the space of ellipses to improve the quality of the estimate
for ill-posed problems. We also intend to characterise the
empirical and theoretical accuracy of our measure of uncer-
tainty more comprehensively by extending the scope of the
Monte Carlo simulations and experiments.
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A Proof of Equation (4.14)

In this appendix, we establish Eq. (4.14). The proof will not rely on
general identities for pseudo-inverse matrices but rather will involve
the specifics of r(θ) and π(η).

Differentiating r(tθ) = r(θ) with respect to t and evaluating at t =

1, we find that ∂θr(θ)θ = 0. Hence, in particular, ∂θr(π(η))π(η) = 0.
Consequently, recalling (4.4), we have

∂θr(π(η))P⊥π(η) = ∂θr(π(η)) − ‖π(η)‖−2∂θr(π(η))π(η)π(η)T

= ∂θr(π(η)).

We summarise this simply as

∂θr P⊥π(η) = ∂θr

in line with our earlier convention that ∂θr be evaluated at π(η). As an
immediate consequence, we obtain

((∂θr)T∂θr + λI6)P⊥π(η) = (∂θr)T∂θr + λP⊥π(η).

This together with the observation that (∂θr)T∂θr+λP⊥π(η) is symmet-
ric (being the sum of the symmetric matrices (∂θr)T∂θr and λP⊥π(η))
yields

((∂θr)T∂θr + λI6)P⊥π(η) = (((∂θr)T∂θr + λI6)P⊥π(η))
T

= (P⊥π(η))
T((∂θr)T∂θr + λI6)T

= P⊥π(η)((∂θr)T∂θr + λI6).

(A.1)

Now note that if A and B are square matrices of the same sizes, A is
invertible, and AB = BA, then A−1B = BA−1, as is easily seen by
pre- and post-multiplying the both sides of AB = BA by A−1. This in
conjunction with (A.1) implies

((∂θr)T∂θr + λI6)−1P⊥π(η) = P⊥π(η)((∂θr)T∂θr + λI6)−1. (A.2)

Differentiating the identity ‖π(η)‖2 = π(η)Tπ(η) = 1 with respect
to η, we get

(∂ηπ)Tπ(η) = 0. (A.3)

Hence

(∂ηπ)TP⊥π(η) = (∂ηπ)T
− ‖π(η)‖−2(∂ηπ)Tπ(η)π(η)T

= (∂ηπ)T.

Pre-multiplying both sides of this equality by ((∂ηπ)T∂ηπ)−1 and in-
voking (4.12a), we obtain

(∂ηπ)+P⊥π(η) = (∂ηπ)+. (A.4)

Now recall that for any matrix A, the matrix A+A represents the
orthogonal projection onto the range (column space) of AT, or equiva-
lently, the orthogonal projection onto the orthogonal complement of
the null space of A. Since, on account of (A.3), the null space of
(∂ηπ)T is spanned by π(η), it follows that

((∂ηπ)T)+(∂ηπ)T
= P⊥π(η). (A.5)

We now have all ingredients needed to establish (4.14). We calcu-
late as follows:

(∂ηπ)+((∂θr)T∂θr + λI6)−1((∂ηπ)T)+(∂ηπ)T((∂θr)T∂θr + λI6)∂ηπ

= (∂ηπ)+((∂θr)T∂θr + λI6)−1P⊥π(η)((∂θr)T∂θr + λI6)∂ηπ

= (∂ηπ)+P⊥π(η)((∂θr)T∂θr + λI6)−1((∂θr)T∂θr + λI6)∂ηπ

= (∂ηπ)+P⊥π(η)∂ηπ

= (∂ηπ)+∂ηπ

= I5.

In the above the second line comes from the first by (A.5); the third line
comes from the second by (A.2); the fourth line comes from the third
by the tautological identity ((∂θr)T∂θr+λI6)−1((∂θr)T∂θr+λI6) = I6;
the fifth line comes from the fourth by (A.4); and the sixth line comes
from the fifth by (4.13a). The end result of our calculation is what is
exactly needed to establish (4.14).

B Proof of Equation (5.2)

In this appendix, we establish the covariance formula (5.2). The deriva-
tion is based on two ingredients: an equation characterising θ̂AML and
a covariance propagation formula. The first ingredient, embodied in
Eq. (B.2) below, comes from the optimality condition that θ̂AML satis-
fies as the minimiser of JAML:

[∂θ JAML(θ; x1, . . . , xN )]θ=θ̂AML
= 0T. (B.1)

Direct computation shows that

[∂θ JAML(θ; x1, . . . , xN )]T
= 2Xθθ,

where

Xθ =

N∑
n=1

An

θTBnθ
−

N∑
n=1

θTAnθ

(θTBnθ)2 Bn.

Accordingly, (B.1) can be reformulated as

Xθ̂ θ̂ = 0, (B.2)

where θ̂AML is abbreviated to θ̂ for clarity.
The second ingredient, which will be used in combination with the

first, is the covariance propagation formula

Λ
θ̂

=

N∑
n=1

∂xn
θ̂Λxn

(∂xn
θ̂)T (B.3)
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(cf. [15, 22]). Here it is tacitly assumed that, corresponding to varying
sets of data points x1, . . . , xN , the normalised vectors θ̂ = θ̂(x1, . . . , xN )
have been chosen in a coordinated way, so that θ̂ varies smoothly, with-
out sign flipping, as a function of x1, . . . , xN and in particular may be
differentiated.

As a first step towards the derivation of formula (5.2), we differen-
tiate ‖θ̂‖2 = 1 with respect to xn to get (∂xn

θ̂)Tθ̂ = 0. This jointly with
(4.4) and (B.3) then implies

P⊥
θ̂
Λ

θ̂
= Λ

θ̂
P⊥
θ̂

= Λ
θ̂
. (B.4)

Next, letting xn = [mn,1,mn,2]T and θ̂ = [θ̂1, . . . , θ̂6]T, and differentiat-
ing (B.2) with respect to mn,i, we obtain[∂mn,i

Xθ]θ=θ̂ +

6∑
j=1

[∂θ j
Xθ]θ=θ̂∂mn,i

θ̂ j

 θ̂ + Xθ̂∂mn,i
θ̂ = 0.

Introducing the Gauss-Newton approximation, i.e., neglecting the
terms that contain θ̂Tu(xn), we arrive (after some calculations) at

u(xn)[∂mn,i
u(xn)]Tθ̂

θ̂TBnθ̂
+

 N∑
n=1

An

θ̂TBnθ̂

 ∂mn,i
θ̂ = 0.

This together with the observation that the scalar [∂mn,i
u(xn)]Tθ̂ can

also be written as θ̂T∂mn,i
u(xn) leads to

 N∑
n=1

An

θ̂TBnθ̂

 ∂mn,i
θ̂ = −

u(xn)[∂mn,i
u(xn)]Tθ̂

θ̂TBnθ̂
= −

u(xn)θ̂T∂mn,i
u(xn)

θ̂TBnθ̂
.

Consequently, N∑
n=1

An

θ̂TBnθ̂

 ∂xn
θ̂ = −

u(xn)θ̂T∂xn
u(xn)

θ̂TBnθ̂

and further, recalling the definitions of An and Bn given in (2.5),

 N∑
n=1

An

θ̂TBnθ̂

 ∂xn
θ̂Λxn

(∂xn
θ̂)T

 N∑
n=1

An

θ̂TBnθ̂


=

u(xn)θ̂T∂xn
u(xn)Λxn

[∂xn
u(xn)]Tθ̂u(xn)T

(θ̂TBnθ̂)2

=
u(xn)u(xn)T

θ̂TBnθ̂
=

An

θ̂TBnθ̂
.

Now N∑
n=1

An

θ̂TBnθ̂

  N∑
n=1

∂xn
θ̂Λxn

(∂xn
θ̂)T

  N∑
n=1

An

θ̂TBnθ̂

 =

N∑
n=1

An

θ̂TBnθ̂
.

By (5.1) and (B.3), the last equality becomes

Mθ̂Λθ̂
Mθ̂ = Mθ̂ . (B.5)

At this stage, one might be tempted to conclude that Λ
θ̂

= M−1
θ̂

, but
this would contravene the fact that Λ

θ̂
is singular. In order to exploit

(B.5) properly as an approximate equality, we first note that, in view of
(B.4) and the fact that P⊥

θ̂
is idempotent, P⊥

θ̂
= (P⊥

θ̂
)2, we have

P⊥
θ̂
Λ

θ̂
P⊥
θ̂

= Λ
θ̂
, (B.6)

so (B.5) can be rewritten as

Mθ̂P⊥
θ̂
Λ

θ̂
P⊥
θ̂

Mθ̂ = Mθ̂ .

Pre- and post-multiplying the last equation by P⊥
θ̂

and letting

M⊥

θ̂
= P⊥

θ̂
Mθ̂P⊥

θ̂

now leads to

M⊥

θ̂
Λ

θ̂
M⊥

θ̂
= M⊥

θ̂
. (B.7)

In turn, pre- and post-multiplying (B.7) by (M⊥

θ̂
)+ yields

(M⊥

θ̂
)+M⊥

θ̂
Λ

θ̂
M⊥

θ̂
(M⊥

θ̂
)+

= (M⊥

θ̂
)+M⊥

θ̂
(M⊥

θ̂
)+. (B.8)

The matrix M⊥

θ̂
is symmetric and its null space is spanned by θ̂, so

M⊥

θ̂
(M⊥

θ̂
)+

= (M⊥

θ̂
)+M⊥

θ̂
= P⊥

θ̂

(cf. [4, Cor. 3.5]). We also have (M⊥

θ̂
)+M⊥

θ̂
(M⊥

θ̂
)+

= (M⊥

θ̂
)+ by virtue

of one of the four defining properties of the pseudo-inverse [4, Thm.
3.9]. Therefore (B.8) can be restated as

P⊥
θ̂
Λ

θ̂
P⊥
θ̂

= (M⊥

θ̂
)+,

which, on account of (B.6), implies

Λ
θ̂

= (M⊥

θ̂
)+. (B.9)

We now deduce our final formula for Λ
θ̂

, namely

Λ
θ̂

= P⊥
θ̂

(Mθ̂)+
5 P⊥

θ̂
, (B.10)

which is nothing else but Eq. (5.2) transcribed to the present notation.
First we note that as, by (B.2), θ̂ spans the null space of Xθ̂ , Xθ̂ has
rank 5. Next we observe that in the Gauss–Newton approximation Xθ̂

is equal to Mθ̂ , so, having rank 5, Xθ̂ is also approximately equal to
(Mθ̂)5. This in turn implies that, approximately,

(Mθ̂)+
5 = X+

θ̂
,

given that the function A 7→ A+ is continuous when considered on sets
of matrices of equal rank [20,36,45,52], The last equality together with
P⊥
θ̂

X+

θ̂
P⊥
θ̂

= X+

θ̂
, which immediately follows from the facts that Xθ̂ is

symmetric and that θ̂ spans the null space of Xθ̂ , implies

P⊥
θ̂

(Mθ̂)+
5 P⊥

θ̂
= X+

θ̂
. (B.11)

As Mθ̂ is approximately equal to Xθ̂ , it is clear that M⊥

θ̂
(= P⊥

θ̂
Mθ̂P⊥

θ̂
)

is approximately equal to P⊥
θ̂

Xθ̂P⊥
θ̂

= Xθ̂ . Both M⊥

θ̂
and Xθ̂ have rank

5, so, as they are approximately equal, their pseudo-inverses are also
approximately equal,

(M⊥

θ̂
)+

= X+

θ̂
,

by the aforementioned continuity property of the pseudo-inverse. Com-
bining this last equation with (B.11) yields

(M⊥

θ̂
)+

= P⊥
θ̂

(Mθ̂)+
5 P⊥

θ̂
,

and this together (B.9) establishes (B.10).
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