
FURTHER OPTIMIZATIONS FOR THE CHAN-VESE ACTIVE CONTOUR MODEL

Zygmunt L. Szpak and Jules R. Tapamo

School of Computer Science

University of KwaZulu-Natal

Durban, 4062, Republic of South Africa

Email: zygmunt.szpak@cs.ukzn.ac.za and tapamoj@ukzn.ac.za

KEYWORDS

Fast level-set, Optimization, Active Contours Without

Edges, Chan-Vese, Shi-Karl, Segmentation

ABSTRACT

When a Chan-Vese active contour model is implemented

in a framework that does not solve partial differential

equations, we show how the mean pixel intensity inside

and outside the curve can be updated efficiently. We

reduce each iteration of the Chan-Vese active contour

by O(n), when compared to an approach whereby the

mean pixel intensities are recalculated for each iteration

by looping over the entire image. After implementing

the Chan-Vese active contour in the Shi-Karl level-set

framework that does not solve partial differential equa-

tions, we show that the active contour may be trapped in

an idempotent cycle, and we introduce a new stopping

criterion to deal with this situation, thereby eliminating

wasted computation cycles. Finally, we optimize the reg-

ularization cycle in the Shi-Karl framework, by detecting

when an additional execution of the regularization cycle

has no effect on the active contour, and breaking out of

the loop.

1. INTRODUCTION

In (Lakshmanan et al., 2006) and (Pan et al., 2006a),

the authors propose efficient implementations for the

Chan-Vese Active Contours Without Edges model (Chan

and Vese, 2001), in a level-set framework that does not

require the calculation of partial differential equations.

These implementations reduce computation time by us-

ing lists of points to represent the contours, and by evolv-

ing the contours by adding and removing points from

these lists; while concurrently updating a level-set func-

tion. Previous work focused on modelling the evolution

of the curve, and no mention was made of how to effi-

ciently calculate the mean pixel intensity inside and out-

side the curve. This is a crucial calculation in the Chan-

Vese model. We show how the mean intensity inside the

curve and outside the curve can be efficiently updated for

each iteration of the curve evolution, and we compare the

resulting speed increase against an approach where the

mean intensities are recalculated over the entire image

at each iteration. Our proposed calculation scheme can

be used whenever the mean intensities inside and outside

the curve are required, and a list of points representing

the curve is used. We implement our solution in the Shi-

Karl (Shi and Karl, 2005a) fast level-set framework, and

emphasize the speed increase of our method by testing it

on large 1024×768 images.

Additionally, we propose a simple modification to the

gaussian filtering curve regularization method, used in

(Shi and Karl, 2005a), which eliminates redundant cy-

cles and hence decreases the time to convergence. We

also show that for certain images, a gaussian filtering reg-

ularization method will prevent the active contour from

terminating. To overcome this problem we introduce an

additional stopping criterion.

The rest of our paper is organized as follows. In Sec-

tion 2 we summarize the Shi-Karl fast level-set frame-

work, that does not require the calculation of partial dif-

ferential equations. We review the Chan-Vese piecewise-

constant active contour model, and discuss its use and

limitations in Section 3. Our proposed optimization for

calculating the mean pixel intensity, inside the curve and

outside the curve, is presented in Section 4, and our new

stopping criterion and optimization for the gaussian fil-

tering regularization method, is introduced in Section 5.

2. SHI-KARL FAST LEVEL-SET METHOD

The level-set method is a numerical technique, for track-

ing a propagating interface which changes topology over

time. It is often used in image segmentation (Paragios

and Deriche, 2000). A segmentation is achieved by plac-

ing a closed curve on an image, and by evolving the curve

according to internal, external and user defined forces.

Snakes (Kass et al., 1987) are used in a similar way to

segment an image, but in the level-set method, the curve

can split and change topology whereas snakes cannot.

The traditional level-set method (Sethian, 1999), requires

the calculation of partial differential equations, that gov-

ern the evolution of the curve. This is a very time con-

suming calculation. In (Shi and Karl, 2005a), the authors

proposed a fast implementation of the level-set method,

that does not require the calculation of partial differen-

tial equations. Their framework resembles the traditional

level-set method, because the curve C is still represented

implicitly as the zero level-set of a function φ. The func-

tion φ is defined as the signed distance function, which is

positive outside C and negative inside C. From this defi-

nition, when a point on C moves inward, its neighboring

Proceedings of the 2008 High Performance
Computing & Simulation Conference ©ECMS
Waleed W. Smari (Ed.)
ISBN: 978-0-9553018-7-2 / ISBN: 978-0-9553018-6-5 (CD)

point that previously was inside the curve C, will lie out-

side the curve, and so the value of φ of that neighboring

point will change from negative to positive. Similarly if

a point on C moves outwards, the value of φ of its out-

side neighboring point will change from positive to nega-

tive. This means that the evolution of the curve C can be

controlled without solving partial differential equations,

by manipulating the values of φ for a list of neighboring

points outside C (Lout), and a list of neighboring points

inside C (Lin). Formally, the two lists of neighboring

points can be defined as:

Lin = {x|φ(x) < 0 and ∃ y ∈ N4(x), φ(y) > 0}
(1)

Lout = {x|φ(x) > 0 and ∃ y ∈ N4(x), φ(y) < 0},
(2)

where N4(x) is the discrete 4-connected neighborhood

of a pixel x.

To approximate the signed distance function, φ is de-

fined as:

φ(x) =







3, if x is outside C and x /∈ LOut;
1, if x ∈ LOut;

−1, if x ∈ LIn;
−3, if x is inside C and x /∈ LIn.

(3)

The curve is evolved by switching neighboring pixels

between the two lists Lin and Lout, based on an external

speed function Fext, an internal speed function Fint, and

by updating the level set function φ. The external speed is

used to attract the curve to the regions of interest, while

the internal speed is used to regularize the evolution of

the curve so that the curve remains smooth.

The evolution of C is split into two different cycles.

In the first cycle, C is evolved according to the external

speed; a positive value of Fext moves a point on C out-

wards (by switching the point from Lout to Lin), while

a negative value of Fext moves a point on C inwards (by

switching the point from Lin to Lout).

The external speed is synthesized from the image and

there are many ways to define Fext. For example, the

function Fext could be based on the response of an edge

detector applied to the image; it could be based on a

range of pixel intensities only, or as in the case of the

Chan-Vese Active Contours Without Edges, the speed

could depend on the mean intensities of the regions in-

side and outside the curve C.

In the second cycle, C is evolved according to the in-

ternal speed. The most common way to define Fint, is to

apply a gaussian filter on the level-set function φ for each

point on the curve C. The gaussian filter is a weighted

sum of a neighborhood of φ, centered at a point on the

curve C. If the majority of pixels in the neighborhood

are inside C, switching a point from Lout to Lin has a

smoothing effect on the curve. Otherwise, if the majority

of pixels in the neighborhood are outside C, then switch-

ing a point from Lin to Lout smoothes the curve. This

observation can be summarized into the following rule:

a point is switched from Lout to Lin or vice versa, if the

sign of φ for that point before the gaussian filter is applied

to it, is different from the sign of φ after the gaussian fil-

ter is applied to it.

The evolution of the curve stops when one of two fol-

lowing conditions is satisfied: (a) The speeds at each

neighboring grid point satisfy:

F (x) ≤ 0, ∀x ∈ Lout

F (x) ≥ 0, ∀x ∈ Lin;
(4)

(b) a pre-defined maximum number of iterations Na, is

reached. The pre-defined maximum number of iterations

needs to be specified for a noisy image, because the curve

may fail to converge to the stable state specified in (a).

This fast level-set framework has been used to solve

image processing problems in real time. Before we show

how this framework can be used to calculate and up-

date the mean intensities inside and outside the evolving

curve, we first review the Chan-Vese model in the next

section.

3. CHAN-VESE ACTIVE CONTOUR MODEL

The advantage of the Chan-Vese Active Contours With-

out Edges model, is that it is able to segment an image

that has smooth boundaries. It can do this because the

evolution of the curve does not depend on gradient in-

formation, so weak edges do not affect the final segmen-

tation. The Chan-Vese model suffers from initialization

problems (Pan et al., 2006b). The final segmentation is

dependent on the placement of the initial curve; some-

times this behavior is desirable

The original formulation of the Active Contours With-

out Edges model (Chan and Vese, 2001), focused on bi-

modal images. This was later extended to multiphase im-

ages (Chan and Vese, 2002). In the bi-modal model, it is

assumed that an image I consists of two regions, cf and

cb, of approximately piecewise-constant distinct intensity

values. If the region to be segmented is represented by

cf , then a curve C can be evolved to reach the boundary

of cf by minimizing the energy:

F1(C) + F2(C), (5)

where F1 and F2 are defined as follows:

F1(C) =

∫

inside(C)

|I − c1|
2dxdy

and (6)

F2(C) =

∫

outside(C)

|I − c2|
2dxdy.

C represents the curve, and the variables c1 and c2 rep-

resent the average intensities inside and outside the curve

respectively. If the curve C is inside the region to be seg-

mented, represented by intensity cf , then F1(C) ≈ 0 and

F2(C) > 0. If the curve C is outside cf , then F1(C) > 0
and F2(C) ≈ 0. Only when the curve is on the boundary

of the region of interest will F1 ≈ 0 and F2 ≈ 0.

To incorporate this energy minimization into the fast

level-set framework, only the external speed function

Fext needs to be defined.

3.1 Definition of the External Speed Function

To incorporate the Chan-Vese model into the Shi-Karl

level-set framework, the authors in (Lakshmanan et al.,

2006) calculate the external speed with:

vi = I(x, y) − ci i ∈ {1, 2}, (7)

where I(x, y) is the pixel intensity of a point on the

curve, c1 is the average pixel intensity inside the curve

and c2 is the average pixel intensity outside the curve.

The external speed Fext is then defined as:

Fext =

{
1, if v1 ≤ 0 and v2 > 0;

−1, if v1 > 0 and v2 ≤ 0.
(8)

This definition of the external speed is not entirely cor-

rect. According to this definition, the curve will only

expand outwards if the pixel intensity of a point on the

curve is greater than the average pixel intensity of the

area outside the curve. Figure 1 a) illustrates such an ex-

ample and the rectangle is successfully segmented. How-

ever, by inverting the colors of the test image such that

the average pixel intensity of the area outside the curve, is

greater than the intensity of a point on the curve, the rect-

angle is not segmented because the curve fails to evolve

outwards (see Figure 1 b)).

To solve this problem we define Fext as:

Fext =

{
1, if |v1| < |v2|;

−1, if |v1| > |v2|,
(9)

where v1 and v2 are calculated with equation (7). In

the next section we show how the average intensities c1

and c2 can be updated efficiently for each evolution iter-

ation of the curve.

4. CALCULATING AND UPDATING THE MEAN

PIXEL INTENSITIES

Previous work on fast implementations of the Chan-Vese

model (Lakshmanan et al., 2006; Pan et al., 2006a), did

not discuss how the mean pixel intensities, outside the

curve and inside the curve, can be calculated. We show

that the mean intensities c1 and c2 can be updated effi-

ciently during the evolution of the curve, since each pixel

on the curve in the Shi-Karl fast level-set framework, is

moved outward or inwards sequentially, and the intensi-

ties of the pixels that are modified in the level-set func-

tion φ are known. In the traditional level-set framework,

where partial differential equations are solved, the level-

set function φ is evaluated over the entire image, or over

a narrow band (Adalsteinsson and Sethian, 1995), and

there is no direct knowledge of which pixels have moved

outwards, which pixels have moved inwards and which

pixels have remained stationary. As a consequence, there

is no direct and obvious knowledge of how the mean in-

tensities inside and outside the curve can be updated on-

line. Hence, the mean intensities are calculated by iterat-

ing over the entire image, for each iteration of the curve

evolution. The original paper on Active Contours With-

out Edges (Chan and Vese, 2001), presents the calcula-

tion of the mean intensities as such, and to our knowl-

edge no faster way of calculating the mean intensities

has been presented in previous works. In fact, even work

that combines the fast Shi-Karl level-set method and the

Chan-Vese Active Contours Without Edges for real-time

contour tracking (Thida et al., 2006), still presents the

calculation of the mean intensities inside and outside the

curve, as the iteration over the entire image for each

frame. For these reasons, we choose the calculation of

the mean intensities inside and outside the curve C, by

iterating over the entire image for each iteration of the

curve evolution, as the baseline against which we com-

pare our proposed method.

Our proposed calculation scheme is simple to imple-

ment. Given Ω the image domain, a value v, and Ωv

defined as follows:

Ωv = {(x, y) ∈ Ω / φ(x, y) = v}, (10)

initial values of c1 and c2 can be obtained as follows:

c1 =
ii(−3)

tpi(−3)
(11)

and

c2 =
io(3)

tpo(3)
, (12)

where for a certain value v, ii(v), io(v), tpo(v) and

tpi(v) are defined as follows:

ii(v) =

∫

Ωv

I(x, y)H(φ(x, y))dxdy; (13)

tpi(v) =

∫

Ωv

H(φ(x, y))dxdy; (14)

io(v) =

∫

Ωv

I(x, y)(1 − H(φ(x, y)))dxdy; (15)

tpo(v) =

∫

Ωv

(1 − H(φ(x, y)))dxdy; (16)

and H(x) is a step function defined as:

H(x) =

{
1, if x > 1;
0, if x < −1.

(17)

In summary, tpi(−3) is the total number of pixels for

which φ = −3; tpo(3) is the total number of pixels for

which φ = 3; ii(−3) is the sum of intensities of the

pixels, for which φ = −3 and io(3) is the sum of the

intensities of the pixels, for which φ = 3.

Once the initial values for c1 and c2 have been calcu-

lated, they can be updated efficiently for the evolution of

Figure 1: A Poorly Defined External Speed Function a) The contour successfully evolves and segments the rectangle. b)

The contour fails to evolve at all. The initial placement of the curve is overlayed with dashed lines for clarity.

the curve, every time a pixel is switched from Lin to Lout

or vice-versa, and anytime a pixel is removed from a list

without placing it in the other list. With this in mind,

we modified the two fundamental methods that govern

the evolution of the curve in the Shi-Karl fast level-set

framework: switch in(x) and switch out(x).
The purpose of the switch in(x) procedure is to

move a point on the curve outward by one pixel, while

the switch out(x) procedure moves a point on the

curve inward by one pixel. Our modified procedure

switch in(x) for a point x ∈ LOut is defined as:

1. Delete x from LOut and add it to LIn. Set φ(x) =
−1;

2. ∀y ∈ N4(x) satisfying φ(y) = 3, add y to LOut and

set φ(y) = 1; tpo −→ tpo − 1 and io −→ io − y,

while our modified procedure switch out(x) for a

point x ∈ LIn is defined as:

1. Delete x from LIn and add it to LOut. Set φ(x) =
1;

2. ∀y ∈ N4(x) satisfying φ(y) = −3, add y to LIn

and set φ(y) = −1; tpi −→ tpi − 1 and ii −→
ii − y,

where N4(x) is the discrete 4-connected neighborhood

of x, and ii, tpi, io and tpo are defined by equations (13)-

(16) respectively.

By adding and subtracting from the variables ii, tpi,

io and tpo, we can keep track of the necessary informa-

tion to recalculate the mean intensities c1 and c2, without

having to iterate over the whole image I .

4.1 Evolving the Curve

Besides switch in(x) and switch out(x), two more

methods remove in(x) and remove out(x) need to be

defined, to explain in detail how the curve C is evolved.

The procedure remove in(x) is defined as:

1. if ∀y ∈ N4(x), φ(y) < 0, delete x from Lin and

set φ(x) = −3;

2. tpi −→ tpi + 1 and ii −→ ii + x,

and the procedure remove out(x) is defined as:

1. if ∀y ∈ N4(x), φ(y) > 0, delete x from Lout and

set φ(x) = 3;

2. tpi −→ tpo + 1 and io −→ io + x

The purpose of these methods is to remove redundant

points that may have been added to Lin or Lout, when the

level-set function φ was modified with the switch in(x)
and switch out(x) procedures.

An outline of the algorithm proposed by Shi and Karl,

that evolves the curve C, is listed in Algorithm 1. The

⊗ symbol denotes convolution, and G is a gaussian ker-

nel. The stopping condition is tested after the curve is

evolved according to both the internal force and external

force cycles. Some implementations check for the stop-

ping condition immediately after the external force evo-

lution cycle, and skip the internal force evolution cycle if

the stopping condition is satisfied. In Section 5, we in-

troduce an additional stopping condition to optimize the

gaussian regularization cycle.

4.2 Experimental Results on the Fast Mean Intensity

Calculation

We have reduced the time complexity of each iteration

of our algorithm by O(n), where n is the number of pix-

els in image I , by calculating c1 and c2 at each iteration

based on updated values of ii, tpi, io and tpo, instead of

calculating c1 and c2 by iterating over the entire image I .

To demonstrate the optimization, we ran our algo-

rithm on a large 1024×768 image taken from the Caltech

database (Griffin et al., 2007), using an Intel Core 2, 6420

@ 2.13 GHZ with 2 Gigabytes of RAM, and compared

it to the algorithm that calculates c1 and c2 by iterating

over the whole image. We evolved our curve according

to the external force Fext only. Refer to Figure 2.

5. OPTIMIZING THE REGULARIZATION

METHOD

By evolving a curve according to the external speed Fext

only, the curve often develops sharp boundaries due to

Figure 2: Comparison of Mean Intensity Calculation Methods in Time a) The dashed square represents the initial curve

boundary. b) Difference in computation time between our proposed method, and an implementation in which the mean

pixel intensities outside and inside the curve, are calculated by iterating over the entire image for each iteration of the

curve evolution. No regularization was used.

Algorithm 1 Algorithm for Curve Evolution in the Shi-

Karl Framework

1: Initialize the array φ, F , and the two lists Lin and

Lout.

2: repeat

3: for i = 0 to next do {Evolve according to external

speed for next iterations}
4: For each point x ∈ Lout, switch in(x), if

Fext > 0.

5: For each point x ∈ Lin, remove in(x).
6: For each point x ∈ Lin, switch out(x), if

Fext < 0.

7: For each point x ∈ Lout, remove out(x).
8: end for

9: for i = 0 to nint do {Evolve according to internal

speed (smoothness) for nint iterations}
10: For each point x ∈ Lout, switch in(x), if

(G ⊗ φ)(x) < 0.

11: For each point x ∈ Lin, remove in(x).
12: For each point x ∈ Lin, switch out(x), if

(G ⊗ φ)(x) > 0.

13: For each point x ∈ Lout, remove out(x).
14: end for

15: until equation (4) holds, or Na iterations have

elapsed.

noise. To smooth the curve and to make it less sus-

ceptible to noise, an internal speed Fint is usually in-

troduced into the model. In the traditional curve evolu-

tion methods which are based on partial differential equa-

tions, the internal speed is some regularization parame-

ter or function, that is introduced into an energy mini-

mization framework. However, in the Shi-Karl level-set

framework that does not solve partial differential equa-

tions, the most common approach to smooth the curve is

to perform a gaussian filtering on the level-set function φ.

We summarized the gaussian filter method in Section 2.

In this Section we discuss a further optimization to this

method and introduce an additional stopping criterion,

after demonstrating that performing a gaussian filtering

on the level-set function may in some cases prevent the

active contour from terminating.

5.1 Gaussian Filtering and Idempotent Active Con-

tours Without Edges

On certain images, the choices of the number of itera-

tions for the external force cycle Fext, and the internal

force cycle Fint, can cause idempotents. For example,

the curve C could be caught in a cycle where it expands

outwards due to the external force, and shrinks back to its

original shape because of the internal force. This usually

happens when the curve has almost reached its optimum

boundary, when evolving with the external force Fext,

and most pixels are stationary. Refer to Figure 3 for an

example of an active contour trapped in such a cycle.

Related work that uses the Shi-Karl fast level-set

framework (Shi and Karl, 2005b) and (Thida et al.,

2006), presents the stopping criteria a) and b) in equa-

tion (4), whereby the parameter Na is used to ensure the

termination of the algorithm for noisy images.

Specifying a pre-determined maximum number of it-

erations Na will ensure the termination of the algorithm,

but the choice of an appropriate value is difficult. If the

chosen value is too low, it can result in a premature ter-

mination, and if it is too high it will increase the compu-

tation time unnecessarily.

In (Shi and Karl, 2005b), the authors state that when

noise in an image is low, one can choose a small value

for nint , or increase the parameter next, to reduce the

percentage of computation allocated for smoothness reg-

ularization, thereby speeding up the algorithm (refer to

Algorithm 1). This may be true for certain images, but

Figure 3 clearly demonstrates that an evolving curve can

be trapped in a cycle, even when there is no noise in the

image.

We solve this problem by testing for idempotents and

stopping the evolution of the curve when a cycle is de-

tected.

After n iterations of evolving the curve according to

both the external and internal force cycles, the points

contained in the outer list Lout are defined as xn. By

evolving the curve C according to the external force (rep-

resented by function f ; f2 = f ◦ f is the composition of

f by itself, and fn = f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

n times

), we have

fnext(xn) = xnext
, (18)

where xnext
are the points contained in Lout, after the

external force evolution cycle. After evolving according

to the internal force (represented by function f̂), if we

have

f̂nint(xnext
) = xn, (19)

then a cycle has been detected.

Unfortunately, this type of cycle detection involves

comparing each element in xn with each element in

xn−1, which is time consuming especially if the lists are

not sorted. To avoid making these comparisons, we in-

stead test to see if the number of points in xn is approx-

imately the same as the number of points in xn−1. In

other words, we detect a cycle if

|xn| = |xn−1| − ǫ, where ǫ ∈ Z. (20)

We choose ǫ to be a small integer, usually ǫ ∈
{−2,−1, 0, 1, 2}. This is necessary because sometimes

the difference between the two lists is only one or two

pixels, which have no real impact on the final segmen-

tation; without the ǫ a lot of computation is wasted on

insignificant pixels.

5.2 Removing Redundant Cycles During Regulariza-

tion

We have already mentioned that the number of iterations

for the external speed evolution cycle and the internal

speed evolution cycle, have to be chosen empirically.

Sometimes the number of iterations for the internal speed

evolution cycle (regularization) can be set too high, re-

sulting in wasted computation cycles. When the curve C
is evolved according to the internal force (represented by

function f̂), there may be a value of k such that

f̂nint−k(xnext
) = xn (21)

and

f̂nint−k+1(xnext
) = xn, (22)

where k ∈ N and nint is the empirically chosen number

of iterations for the internal speed evolution cycle. Us-

ing equations (21) and (22), we can exit the regulariza-

tion cycle when we detect that a cycle has not changed

xn, and avoid unnecessary computations. In practice, to

sidestep comparing each element in xn with each ele-

ment in xn−1, we instead exit the regularization cycle

when equation (20) is true for ǫ = 0.

5.3 Choosing Parameters

In (Shi and Karl, 2005a), the authors mention that the

choice of the parameter nint, should normally be set

to equal the size Nk of a gaussian kernel. The size of

the gaussian kernel (Nk), is geometrically related to the

elimination of small holes in the final segmentation; to

eliminate holes with a radius smaller than r, Nk = 2r.

However, in our experiments we found that when nint

is greater than the size of the gaussian kernel, segmenta-

tion results can sometimes be affected in a positive way

(refer to Figure 4 for an example). Hence, we prefer to

choose nint ≈ 3Nk, and allow our algorithm to remove

redundant regularization cycles. In this way, the amount

of smoothing can vary for each iteration.

The number of iterations devoted to external speed

evolution (next), is usually greater than nint, since it at-

tracts the curve to the regions of interest.

Finally, the choice of ǫ for the detection of idempo-

tents, is related to the size of the objects in the scene that

are to be segmented. For example, if one of the objects

is a needle, then it is possible that from one complete

curve evolution cycle to the next (using both the external

and internal force), the curve expands by only one pixel

and so we should choose ǫ > 1. If the objects are large,

than it is unlikely that the curve should expand by only

one pixel after one complete curve evolution cycle, and

so we set ǫ ≤ 1.

5.4 Experimental Results on the New Stopping and

Regularization Criteria

Figure 5 shows a comparison in running time of an ac-

tive contour on a test image, with and without our new

criteria. The test was conducted on a 640×480 image

taken from the Caltech database (Griffin et al., 2007), us-

ing an Intel Core 2, 6420 @ 2.13 GHZ with 2 Gigabytes

of RAM. The running time of our algorithm was consid-

erably less, because it removed redundant regularization

cycles and detected idempotents. The same method of

calculating the mean pixel intensities was used through-

out the experiment.

In Figure 6 we compare the running time on a large

1600×1600 image of Mars, also taken from the Caltech

database. Once again the running time of our algorithm

is less. In this image, the difference between the run-

ning time is not so great, because the active contour was

not trapped in an idempotent cycle, and only 5 iterations

were devoted to regularization per evolution cycle. This

means that there are at most only 5 redundant regular-

ization cycles, per evolution cycle. By increasing the

amount of iterations devoted to regularization, the dif-

ference in computation time becomes more noticeable.

Nonetheless, even fractions of a second are important in

real-time image processing.

Figure 3: Example of an Active Contour Trapped in an Idempotent Cycle a) The initial contour (0 Iterations). b) Region

inside the curve after 502 iterations. c) Region inside the curve after the external speed evolution cycle (522 iterations).

d) Region inside the curve after the regularization cycle (532 iterations). Notice that b) and d) are exactly the same. This

cycle could continue indefinitely. For example, iteration 562 will be the same as b) and d).

Figure 4: Difference in Regularization Quality a) Regularization, by choosing nint as suggested by Shi and Karl (nint

equals the size of the kernel). next = 12, nint = 5 and Na = 1000. A 5 × 5 discrete gaussian kernel was used for

regularization. b) Regularization, by choosing a large value for nint, and allowing our algorithm to remove redundant

regularization cycles. next = 12, nint = 10 and Na = 1000. A 5×5 discrete gaussian kernel was used for regularization.

The arrows point to parts of the curve that are smoother. The initial placement of the curve is overlayed with dashed lines

for clarity.

6. EXPERIMENTAL RESULTS ON THE COMBI-

NATION OF OUR PROPOSED ALGORITHMS

In Figure 7, we compare both the quality of segmenta-

tion and the running time, between an active contour us-

ing a standard regularization implementation and using

the baseline method of calculating the mean intensities

inside and outside the curve, against an active contour

using our proposed regularization method and our fast

mean intensity calculation scheme. We use a synthetic

image of size 512×512, so that a segmentation can be

unambiguously evaluated. Clearly, the segmentation re-

sult is the same for both methods, while the running time

of our method is less.

7. CONCLUSION

We have presented several optimizations for the Chan-

Vese Active Contours Without Edges, when the active

contours are implemented without solving partial differ-

ential equations. Using the Shi-Karl framework, we have

introduced a fast scheme for updating the mean pixel

intensity inside and outside the evolving curve, and we

have explained why we chose the baseline for our com-

parison as the calculation of the mean intensity, by iterat-

ing over the entire image for each iteration. Additionally,

we have shown that the choice of parameters for the ex-

ternal speed evolution loop and the regularization loop,

can trap the active contour in an idempotent cycle, and

we have developed a new stopping criterion to break out

of that cycle. Finally, we have optimized the regulariza-

tion loop by exiting the loop, when a further execution of

the regularization loop has no impact on the active con-

tour.

REFERENCES

Adalsteinsson, D. and Sethian, J. (1995). “A Fast Level Set

Method for Propagating Interfaces”. Journal of Computa-

tional Physics, No. 118(2), 269-277.

Chan, T. and Vese, L. (2001). “Active Contours Without

Edges”. IEEE Trans. Image Processing, No.14(10) (Feb.),

266–277.

Chan, T. and Vese, L. (2002). “A Multiphase Level Set

Framework for Image Segmentation Using the Mumford and

Shah Model”. International Journal of Computer Vision,

No.50(3), 271–293.

Griffin, G.; Holub, A. and Perona, P. (2007). “Caltech-256 Ob-

ject Category Dataset”. California Institute of Technology,

7694, http://authors.library.caltech.edu/7694

Kass, M.; Witkin, A.; and Terzopoulos, D. (1987). “Snakes -

Active Contour Models”. International Journal of Computer

Vision No. 1(4), 321-331.

Lakshmanan, A.; Thida, M.; Chan, K. L. and Zhou, J. (2006).

“Incorporation of Active Contour Without Edges in the Fast

Level Set Framework for Biomedical Image Segmentation”.

In International Conference on Biomedical and Pharmaceu-

tical Engineering (Singapore, Dec.), 296–300.

Pan, Y.; Birdwell, D. J. and Seddik D. M.(2006). “Efficient

Implementation of the Chan-Vese Models Without Solving

PDEs”. In Proceedings of International Workshop On Mul-

timedia Signal Processing (Victoria, BC, Canada, Oct. 03-

06), 350–353.

Pan, Y.; Birdwell, D. J.; and Seddik, D. M. (2006). “An Effi-

cient Bottom-up Image Segmentation Method Based on Re-

gion Growing, Region Competition and the Mumford Shah

Functional”. In Proceedings of International Workshop On

Multimedia Signal Processing (Victoria, BC, Canada, Oct.),

344–348.

Paragios, N. and Deriche, R. (2000). “Coupled Geodesic Active

Regions for Image Segmentation: A Level Set Approach”.

In Proceedings of ECCV (Dublin), 224-240.

Sethian, J. (1999). Level Set Methods and Fast Marching Meth-

ods. Cambridge Monograph on Applied and Computational

Mathematics. Cambridge University Press

Shi, Y. and Karl, W. (2005). “A Fast Level Set Method Without

Solving Pdes. In Proceedings of ICASSP (Philadelphia, PA,

USA, Mar.), 97–100.

Shi, Y. and Karl, W. (2005) “Real-time Tracking Using Level-

sets”. In Proceedings of CVPR (San Diego, CA, USA, June)

Vol. 2, 34–41.

Thida, M.; Chan, K. L. and Eng, H. L (2006) “An Improved

Real-time Contour Tracking Algorithm using Fast Level Set

Method”. In Proceedings of the First Pacific Rim Symposium

(Hsinchu, Taiwan, Dec.), 702–711.

AUTHOR BIOGRAPHIES

ZYGMUNT L. SZPAK is a Master’s student at

the School of Computer Science at the University

of KwaZulu-Natal, South Africa. His general re-

search interests include Artificial Intelligence, Image

Processing, Computer Vision and Pattern Recogni-

tion. Currently, the central theme of his research is

on real-time tracking and modelling of the behavior

of ships, in a maritime environment. His email is

zygmunt.szpak@gmail.com.

JULES R. TAPAMO is Associate Professor at the

School of Computer Science at the University of

KwaZulu-Natal, South Africa. He completed his

PhD degree from the University of Rouen (France)

in 1992. His research interests are in Image Pro-

cessing, Computer Vision, Machine Learning, Algo-

rithms and Biometrics. He is a member of the IEEE

Computer Society, IEEE Signal Processing Society

and the ACM. He maintains a Computer Vision, Im-

age Processing and Data Mining research webpage at

http://www.cs.ukzn.ac.za/cvdm. His email is

tapamoj@ukzn.ac.za.

Figure 5: Comparison of Regularization Methods in Time a) The dashed square represents the initial curve boundary.

b) Difference in computation time between our proposed optimized regularization method, and a standard regularization

implementation that does not remove redundant regularization cycles, and that does not check for idempotents. next =
10, nint = 5 and Na = 1000. A 5 × 5 discrete gaussian kernel was used for regularization.

Figure 6: Comparison of Regularization Methods in Time a) The dashed square represents the initial curve boundary.

b) Difference in computation time between our proposed optimized regularization method, and a standard regularization

implementation that does not remove redundant regularization cycles, and that does not check for idempotents. next =
10, nint = 5 and Na = 2000. A 5 × 5 discrete gaussian kernel was used for regularization.

Figure 7: Comparison of the Combination of our Proposed Optimizations against an Unoptimized Method in Time

and Quality a) Synthetic image corrupted by gaussian noise, with µ = 0 and σ = 80. The square represents the

initial curve boundary. b) Segmentation result of our proposed regularization methods, together with our fast mean

intensity calculation scheme. c) Segmentation result by calculating the mean intensities inside and outside the curve,

for each iteration, and using a standard regularization implementation that does not remove redundant cycles nor check

for idempotents. d) Difference in computation time between the combination of our proposed methods (b), and an

approach that calculates the mean intensities inside and outside the curve, for each iteration, and uses a standard (Shi-

Karl) regularization implementation, that does not remove redundant regularization cycles, and that does not check for

idempotents (c). next = 10, nint = 5 and Na = 1000. A 5 × 5 discrete gaussian kernel was used for regularization.

